394 resultados para Solid-state structures
Resumo:
In order to investigate the factors determining the relative stabilities of layered perovskite and pyrochlore structures of transition metal oxides containing trivalent bismuth, several ternary and quaternary oxides have been investigated. While d0 cations stabilize the layered perovskite structure, cations containing partially-filled d orbitals (which suppress ferroelectric distortion of MO6 octahedra) seem to favor pyrochlore-related structures. Thus, the vanadium analogue of the layered perovskite Bi4Ti3O12 cannot be prepared; instead the composition consists of a mixture of pyrochlore-type Bi1.33V2O6, Bi2O3, and Bi metal. The distortion of Bi1.33V2O6 to orthorhombic symmetry is probably due to an ordering of anion vacancies in the pyrochlore structure. None of the other pyrochlores investigated, Bi2NbCrO7, Bi2NbFeO7, TlBiM2O7 (M = Nb, Ta), shows evidence for cation ordering in the X-Ray diffraction patterns, as indeed established by structure refinement of TlBiNb2O7.
Resumo:
The detailed electronic structure of the n-v addition compound H2O·BF3 has been investigated for the first time by a combined use of electron energy loss spectroscopy (EELS) and UV photoelectron spectroscopy (UPS) augmented by MO calculations. The calculated molecular orbital energies of H2O·BF3 agree well with the UPS results and have been used to assign the electronic transitions obtained from EELS and to construct an orbital correlation diagram. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
Some new observations on the phenomenon of photocapacitane on n-type silicon MOS structures under low intensities of illumination are reported. The difference between the illuminated and dark C---characteristics is automatically followed as a function of the applied bias thereby obtaining the differential photocapacitance and the resulting characteristics has been termed as the Low Intensity Differential Photocapacitance (LIDP). For an MOS capacitor, the LIDP characteristics is seen to go through a well defined maximum. The phenomenon has been investigated under different ambient conditions like light intensity, temperature, dependance of the frequency of the light etc. and it has been found that the phenomenon is due to a band excband excitation. In this connection, a novel sensitive technique for the measurement of the capacitance based upon following the frequency changes of a tank circuit is also described in some detail. It is also shown that the phenomenon can be understood by a simple theoretical model.
Resumo:
The crystal structures of two peptides containing 1-aminocyclohexanecarboxylic acid (Acc6) are described. Boc-Aib-Acc6-NHMe · H2O adopts a β-turn conformation in the solid state, stabilized by an intramolecular 4 → 1 hydrogen bond between the Boc CO and methylamide NH groups. The backbone conformational angles (φAib = – 50.3°, ψAib = – 45.8°; φAcc6 = – 68.4°, ψAcc6 = – 15°) lie in between the values expected for ideal Type I or III β-turns. In Boc-Aib-Acc6-OMe, the Aib residue adopts a partially extended conformation (φAib = – 62.2°, ψAib = 143°) while the Acc6residue maintains a helical conformation (φAcc6 = 48°, ψAcc6= 42.6°). 1H n.m.r. studies in CDCl3 and (CD3)2SO suggest that Boc-Aib-Acc6-NHMe maintains the β-turn conformation in solution.
Metal-organic framework structures - how closely are they related to classical inorganic structures?
Resumo:
Metal-organic frameworks (MOFs) have emerged as an important family of compounds for which new properties are increasingly being found. The potential for such compounds appears to be immense, especially in catalysis, sorption and separation processes. In order to appreciate the properties and to design newer frameworks it is necessary to understand the structures from a fundamental perspective. The use of node, net and vertex symbols has helped in simplifying some of the complex MOF structures. Many MOF structures are beginning to be described as derived from inorganic structures. In this tutorial review, we have provided the basics of the node, the net and the vertex symbols and have explained some of the MOF structures. In addition, we have also attempted to provide some leads towards designing newer structures/topologies.
Resumo:
Three distinct coordination complexes, viz., [Co(imi)(2)(tmb)(2)] (1) [where imi = imidazole], {[Ni(tmb)(2)(H2O)(3)]center dot 2H(2)O}(n) (2) and [Cu-2(mu-tmb)(4)(CH3OH)(2)] (3), have been synthesized hydrothermally by the reactions of metal acetates,2,4,6-trimethylbenzoic acid (Htmb) and with or without appropriate amine. The Ni analogue of 1 and the Co analogue of 2 have also been synthesized. X-ray single-crystal diffraction suggests that complex 1 represents discrete mononuclear species and complex 2 represents a 1D chain coordination polymer in which the Ni(H) ions are connected by the bridging water molecules. Complex 3 represents a neutral dinuclear complex. In 1, the central metal ions are associated by the carboxylate moiety and imidazole ligands, whereas the central metal atom is coordinated to the carboxylate moiety and the respective solvent molecules in 2 and 3. In 3, the four 2,4,6-trimethylbenzoate moieties act as a bridge connecting two copper (11) ions and the 0 atoms of methanol coord geometry, with the methanol molecule at the apical position. In all the three structures the central metal atom sits on a crystallographic inversion centre. In all the cases, the coordination entities are further organized via hydrogen bonding interactions to generate multifarious supramolecular networks. Complexes 1, 2 and 3 have also been characterized by spectroscopic (UV/Vis and IR) and thermal analysis (TGA). In addition, the complexes were found to exhibit antimicrobial activity. The magnetic susceptibility measurements, measured from 8 to 300 K, revealed antiferromagnetic interactions between the Co(II) ions in compound 1 and the Ni(II) ions in la, respectively.
Resumo:
Structures of lithium, sodium, magnesium, and calcium complexes of NJ-dimethylformamide (DMF) have been investigated by X-ray crystallography. Complexes with the formulas LiCl.DMF.1/2H20, NaC104.2DMF, CaC12.2DMF.2H20, and Mg(C104)2.6DMF crystallized in space groups P2]/c, P2/c, Pi, and Ella, respectively, with the following cell dimensions: Li complex, a = 13.022 (7) A, b = 5.978 (4) A, c = 17.028 (10) A, = 105.48 (4)O, Z = 8; Na complex, a = 9.297 (4)A, b = 10.203 (3) A, c = 13.510 (6) A, /3 = 110.08 (4)O, Z = 4; Ca complex, a = 6.293 (4) A, b = 6.944 (2) A, c = 8.853(5) A, a = 110.15 (3)O, /3 = 105.60 (6)", y = 95.34 (5)", Z = 1; Mg complex, a = 20.686 (11) A, b = 10.962 (18) A,c = 14.885 (9) A, /3 = 91.45 (5)O, Z = 4. Lithium is tetrahedrally coordinated while the other three cations are octahedrally coordinated; the observed metal-oxygen distances are within the ranges generally found in oxygen donor complexes of these metals. The lithium and sodium complexes are polymeric, with the amide and the anion forming bridging groups between neighboring cations. The carbonyl distances become longer in the complexes accompanied by a proportionate decrease in the length of the central C-N bond of the amide; the N-C bond of the dimethylamino group also shows some changes in the complexes. The cations do not deviate significantly from the lone-pair direction of the amide carbonyl and remain in the amide plane. Infrared spectra of the complexes reflect the observed changes in the amide bond distances.
Resumo:
The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.
Resumo:
The i.r. spectra of some Ln2BO4 and LnSrBO4 compounds (Ln = La, Pr, Nd, Sm or Gd;B = Fe, Al, Co or Cu) with K2NiF4 or related structures have been studied in the range 800-300 cm−1. The BO6 octahedra in compounds with K2NiF4 structure are elongated. The assignment of the bands in terms of internal modes of sheets of bridged BO6 octahedra or square-planar BO4 sheets has been considered. The observed spectra are correlated with those of solid solutions of these oxides and of LnBO3 perovskites. Unusually high stretching frequencies found in some of the oxides are discussed in terms of the short B---O bonds in the basal plane and the Ln---O bonds along the c axis.
Resumo:
Photochemical oxidation of 11 diaryl thioketones (1-11) was conducted in the solid state. Quite interestingly, of these only six were oxidized to the corresponding carbonyl compound whereas the rest were photostable. However, in solution all were readily oxidized. The difference in behavior between the thioketones in the solid state has been rationalized on the basis of molecular arrangement in the crystal. X-ray crystal structure analyses of four thioketones were carried out in this connection.
Resumo:
Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.
Resumo:
The crystal structures of alkyl 2-deoxy-alpha-D-arabino-hexopyranosides, with the alkyl chain lengths from C-8 to C-18, are established by the single crystal X-ray structural determination. The even-alkyl chain length derivatives crystallized orthorhombic, with space group P2(1)2(1)2(1), whereas the odd-alkyl chain length derivatives crystallized monoclinic, with space group P2(1). The sugar moieties retained a C-4(1) chair conformation and the conformation of the alkyl chains was all-trans. The molecules formed a bilayer structure, in which alkyl chains were interdigitated.The hydrogen bonds, originating from the sugar moieties, were observed in adjacent layers and also within the same layer, resulting in the formation of infinite chains. The alkyl chains arranged parallel to each other and formed planar structures. The thermal properties of the alkyl 2-deoxy glucosides were analyzed further. It was observed that none of the derivatives exhibited mesomorphism. This study establishes that the absence of the hydroxyl group at C-2 of the sugar moiety results in a non-mesogenic nature of the alkyl 2-deoxy-alpha-D-glycosides, as opposed to the profound mesogenic nature of the normal alkyl glycosides.
Resumo:
Sodium ethylselenolates with functional groups X (where X = -OH, -COOH, -COOMe and -COOEt) at beta-carbon were prepared in situ by reductive cleavage of corresponding diselenide with NaBH4 either in methanol or aqueous ammonia. Treatment of these selenolates with [M2Cl2(mu-Cl)(2)(PR'(3))(2)] (M = Pd or Pt; PR'(3) = PMePh2, PnPr(3)) in different stoichiometry yielded various bi- and tri-nuclear complexes. The homoleptic hexanuclear complexes [Pd(mu-SeCH2CH2X)(2)](6) (X = OH, COOH, COOEt), were obtained by reacting Na2PdCl4 with NaSeCH2CH2X. All these complexes have been fully characterized. Molecular structures of ethylselenolates containing hydroxyl and carboxylic acid groups revealed solid state associated structures through inter-molecular hydrogen bond interactions. Trinuclear complex, [Pd3Cl2(mu-SeCH2CH2COOH)(4)(PnPr(3))(2)] (3a), was disposed in a boat form unlike chair conformation observed for the corresponding methylester complex. The effect of beta-functionality in ethylselenolate ligands towards reactivity, structures and thermal properties of palladium and platinum complexes has been extensively Studied.
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.