198 resultados para Sensor Resistivo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) have many application scenarios where external clock synchronisation may be required because a WSN may consist of components which are not connected to each other. In this paper, we first propose a novel weighted average-based internal clock synchronisation (WICS) protocol, which synchronises all the clocks of a WSN with the clock of a reference node periodically. Based on this protocol, we then propose our weighted average-based external clock synchronisation (WECS) protocol. We have analysed the proposed protocols for maximum synchronisation error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our above theoretical claim and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronisation accuracy. A prototype implementation of the WICS protocol using a few TelosB motes also validates the above conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new phenanthrene based chemosensor has been synthesized and investigated to act as highly selective fluorescence and visual sensor for Cu2+ ion with very low detection limit of 1.58 nM: this has also been used to image Cu2+ in human cervical HeLa cancer cells. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple method to enhance the piezoresistive sensitivity of a gold film by more than 30 times and demonstrate it using a microcantilever resonator. Our method depends on controlled electromigration that we use to tune the resistance and sensitivity of the piezoresistive sensor. We attribute the enhancement in strain sensitivity to the creation of an inhomogeneous conduction medium at a predefined location by directed and controlled electromigration. We understand this phenomenon with tunneling-percolation model, which was originally hypothesized to explain nonuniversal percolation behavior of composite materials. 2012-0174]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clock synchronisation is an important requirement for various applications in wireless sensor networks (WSNs). Most of the existing clock synchronisation protocols for WSNs use some hierarchical structure that introduces an extra overhead due to the dynamic nature of WSNs. Besides, it is difficult to integrate these clock synchronisation protocols with sleep scheduling scheme, which is a major technique to conserve energy. In this paper, we propose a fully distributed peer-to-peer based clock synchronisation protocol, named Distributed Clock Synchronisation Protocol (DCSP), using a novel technique of pullback for complete sensor networks. The pullback technique ensures that synchronisation phases of any pair of clocks always overlap. We have derived an exact expression for a bound on maximum synchronisation error in the DCSP protocol, and simulation study verifies that it is indeed less than the computed upper bound. Experimental study using a few TelosB motes also verifies that the pullback occurs as predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of secure communication in mobile Wireless Sensor Networks (WSNs). Achieving security in WSNs requires robust encryption and authentication standards among the sensor nodes. Severe resources constraints in typical Wireless Sensor nodes hinder them in achieving key agreements. It is proved from past studies that many notable key management schemes do not work well in sensor networks due to their limited capacities. The idea of key predistribution is not feasible considering the fact that the network could scale to millions. We prove a novel algorithm that provides robust and secure communication channel in WSNs. Our Double Encryption with Validation Time (DEV) using Key Management Protocol algorithm works on the basis of timed sessions within which a secure secret key remains valid. A mobile node is used to bootstrap and exchange secure keys among communicating pairs of nodes. Analysis and simulation results show that the performance of the DEV using Key Management Protocol Algorithm is better than the SEV scheme and other related work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are many wireless sensor network(WSN) applications which require reliable data transfer between the nodes. Several techniques including link level retransmission, error correction methods and hybrid Automatic Repeat re- Quest(ARQ) were introduced into the wireless sensor networks for ensuring reliability. In this paper, we use Automatic reSend request(ASQ) technique with regular acknowledgement to design reliable end-to-end communication protocol, called Adaptive Reliable Transport(ARTP) protocol, for WSNs. Besides ensuring reliability, objective of ARTP protocol is to ensure message stream FIFO at the receiver side instead of the byte stream FIFO used in TCP/IP protocol suite. To realize this objective, a new protocol stack has been used in the ARTP protocol. The ARTP protocol saves energy without affecting the throughput by sending three different types of acknowledgements, viz. ACK, NACK and FNACK with semantics different from that existing in the literature currently and adapting to the network conditions. Additionally, the protocol controls flow based on the receiver's feedback and congestion by holding ACK messages. To the best of our knowledge, there has been little or no attempt to build a receiver controlled regularly acknowledged reliable communication protocol. We have carried out extensive simulation studies of our protocol using Castalia simulator, and the study shows that our protocol performs better than related protocols in wireless/wire line networks, in terms of throughput and energy efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clock synchronization is an extremely important requirement of wireless sensor networks(WSNs). There are many application scenarios such as weather monitoring and forecasting etc. where external clock synchronization may be required because WSN itself may consists of components which are not connected to each other. A usual approach for external clock synchronization in WSNs is to synchronize the clock of a reference node with an external source such as UTC, and the remaining nodes synchronize with the reference node using an internal clock synchronization protocol. In order to provide highly accurate time, both the offset and the drift rate of each clock with respect to reference node are estimated from time to time, and these are used for getting correct time from local clock reading. A problem with this approach is that it is difficult to estimate the offset of a clock with respect to the reference node when drift rate of clocks varies over a period of time. In this paper, we first propose a novel internal clock synchronization protocol based on weighted averaging technique, which synchronizes all the clocks of a WSN to a reference node periodically. We call this protocol weighted average based internal clock synchronization(WICS) protocol. Based on this protocol, we then propose our weighted average based external clock synchronization(WECS) protocol. We have analyzed the proposed protocols for maximum synchronization error and shown that it is always upper bounded. Extensive simulation studies of the proposed protocols have been carried out using Castalia simulator. Simulation results validate our theoretical claim that the maximum synchronization error is always upper bounded and also show that the proposed protocols perform better in comparison to other protocols in terms of synchronization accuracy. A prototype implementation of the proposed internal clock synchronization protocol using a few TelosB motes also validates our claim.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates a new approach for point matching in multi-sensor satellite images. The feature points are matched using multi-objective optimization (angle criterion and distance condition) based on Genetic Algorithm (GA). This optimization process is more efficient as it considers both the angle criterion and distance condition to incorporate multi-objective switching in the fitness function. This optimization process helps in matching three corresponding corner points detected in the reference and sensed image and thereby using the affine transformation, the sensed image is aligned with the reference image. From the results obtained, the performance of the image registration is evaluated and it is concluded that the proposed approach is efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network life time maximization is becoming an important design goal in wireless sensor networks. Energy harvesting has recently become a preferred choice for achieving this goal as it provides near perpetual operation. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over a fading AWGN channel with perfect/no channel state information provided at the transmitter. We obtain an achievable rate when there are inefficiencies in energy storage and the capacity when energy is spent in activities other than transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy harvesting sensor networks provide near perpetual operation and reduce carbon emissions thereby supporting `green communication'. We study such a sensor node powered with an energy harvesting source. We obtain energy management policies that are throughput optimal. We also obtain delay-optimal policies. Next we obtain the Shannon capacity of such a system. Further we combine the information theoretic and queuing theoretic approaches to obtain the Shannon capacity of an energy harvesting sensor node with a data queue. Then we generalize these results to models with fading and energy consumption in activities other than transmission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting `green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policies are related to the throughput optimal policies. We also obtain the capacity when energy conserving sleep-wake modes are supported and an achievable rate for the system with inefficiencies in energy storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the design and development of a novel low-cost, non-invasive type sensor suitable for human breath sensing is reported. It can be used to detect respiratory disorders like bronchial asthma by analyzing the recorded breathing pattern. Though there are devices like spirometer to diagnose asthma, they are very inconvenient for patient's use because patients are made to exhale air through mouth forcefully. Presently developed sensor will overcome this limitation and is helpful in the diagnosis of respiratory related abnormalities. Polyvinylidene fluoride (PVDF) film in cantilever configuration is used as a sensing element to form the breath sensor. Two identical sensors are mounted on a spectacle frame, such that the tidal flow of inhaled and exhale air will impinge on sensor, for sensing the breathing patterns. These patterns are recorded, filtered, analyzed and displayed using CRO. Further the sensor is calibrated using a U-tube water manometer. The added advantage of piezoelectric type sensing element is that it is self powered without the need of any external power source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study coverage in sensor networks having two types of nodes, namely, sensor nodes and backbone nodes. Each sensor is capable of transmitting information over relatively small distances. The backbone nodes collect information from the sensors. This information is processed and communicated over an ad hoc network formed by the backbone nodes, which are capable of transmitting over much larger distances. We consider two models of deployment for the sensor and backbone nodes. One is a PoissonPoisson cluster model and the other a dependently thinned Poisson point process. We deduce limit laws for functionals of vacancy in both models using properties of association for random measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of a fully integrated optofluidic lab-on-a-chip sensor is presented in this paper. This device is comprised of collinear input and output waveguides that are separated by a microfluidic channel. When light is passed through the analyte contained in the fluidic gap, optical power loss occurs owing to absorption of light. Apart from absorption, a mode-mismatch between the input and output waveguides occurs when the light propagates through the fluidic gap. The degree of mode-mismatch and quantum of optical power loss due to absorption of light by the fluid form the basis of our analysis. This sensor can detect changes in refractive index and changes in concentration of species contained in the analyte. The sensitivity to detect minute changes depends on many parameters. The parameters that influence the sensitivity of the sensor are mode spot size, refractive index of the fluid, molar concentration of the species contained in the analyte, width of the fluidic gap, and waveguide geometry. By correlating various parameters, an optimal fluidic gap distance corresponding to a particular mode spot size that achieves the best sensitivity is determined both for refractive index and absorbance-based sensing.