189 resultados para STRUCTURAL CHARACTERIZATION
Resumo:
Large-area PVDF thin films have been prepared and characterized for quasi-static and high frequency dynamic strain sensing applications. These films are prepared using hot press method and the piezoelectric phase (beta-phase) has been achieved by thermo-mechanical treatment and poling under DC field. The fabricated films have been characterized for quasi-static strain sensing and the linear strain-voltage relationship obtained is promising. In order to evaluate the ultrasonic sensing properties, a PZT wafer has been used to launch Lamb waves in a metal beam on which the PVDF film sensor is bonded at a distance. The voltage signals obtained from the PVDF films have been compared with another PZT wafer sensor placed on the opposite surface of the beam as a reference signal. Due to higher stiffness and higher thickness of the PZT wafer sensors, certain resonance patterns significantly degrade the sensor sensitivity curves. Whereas, the present results show that the large-area PVDF sensors can be superior with the signal amplitude comparable to that of PZT sensors and with no resonance-induced effect, which is due to low mechanical impedance, smaller thickness and larger area of the PVDF film. Moreover, the developed PVDF sensors are able to capture both A(0) and S-0 modes of Lamb wave, whereas the PZT sensors captures only A(0) mode in the same scale of voltage output. This shows promises in using large-area PVDF films with various surface patterns on structures for distributed sensing and structural health monitoring under quasi-static, vibration and ultrasonic situations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fractal Dimensions (FD) are one of the popular measures used for characterizing signals. They have been used as complexity measures of signals in various fields including speech and biomedical applications. However, proper interpretation of such analyses has not been thoroughly addressed. In this paper, we study the effect of various signal properties on FD and interpret results in terms of classical signal processing concepts such as amplitude, frequency, number of harmonics, noise power and signal bandwidth. We have used Higuchi's method for estimating FDs. This study may help in gaining a better understanding of the FD complexity measure itself, and for interpreting changing structural complexity of signals in terms of FD. Our results indicate that FD is a useful measure in quantifying structural changes in signal properties.
Resumo:
Spherical and rod like nanocrystalline Nd2O3 phosphors have been prepared by solution combustion and hydrothermal methods respectively The Powder X-ray diffraction (PXRD) results confirm that hexagonal A-type Nd2O3 has been obtained with calcination at 900 C for 3 h and the lattice parameters have been evaluated by Rietveld refinement Surface morphology of Nd2O3 phosphors show the formation of nanorods in hydrothermal synthesis whereas spherical particles in combustion method TEM results also confirm the same Raman studies show major peaks which are assigned to F-g and combination of A(g) + E-g modes The PL spectrum shows a series of emission bands at similar to 326-373 nm (UV) 421-485 nm (blue) 529-542 nm (green) and 622 nm (red) The UV blue green and red emission in the PL spectrum indicates that Nd2O3 nanocrystals are promising for high performance materials and white light emitting diodes (LEDs) (C) 2010 Elsevier B V All rights reserved
Resumo:
Layered perovskite oxides of the formula ACa~,La,Nb3-,Ti,010 (A = K, Rb, Cs and 0 < x d 2) have been prepared. The members adopt the structures of the parent ACazNb3010. Interlayer alkali cations in the niobium-titanium oxide series can be ion-exchanged with Li+, Na+, NH4+, or H+ to give new derivatives. Intercalation of the protonated derivatives with organic bases reveals that the Bronsted acidity of the solid solution series, HC~ ~ , L ~ ,N~ ~ , T ~ ,dOep~eOnd, s on the titanium content. While the x = 1 member (HCaLaNbzTiOlo) is nearly as acidic as the parent HCazNb3010, the x = 2 member (HLazNbTizOlo) is a weak acid hardly intercalating organic bases with pKa - 11.3. The variation of acidity is probably due to an ordering of Nb/Ti atoms in the triple octahedral perovskite slabs, [Ca~,La,Nb~,Ti,0~0], such that protons are attached to NbO6 octahedra in the x = 1 member and to Ti06 octahedra in the x = 2 member.
Resumo:
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Single crystals (up to 1 cm size) of K, Rb and Cs periodates have been grown in silica gel. In general, good quality crystals were obtained in gel of specific gravity 1.04 and pH 4. The metal/iodine ratios were determined and compared with calculated values. Morphological studies were carried out using a bicircle optical goniometer. Other characterization methods include X-ray diffraction, optical absorption, differential scanning calorimetry and optical microscopy. Microscopic examination of CsIO4 crystals in particular has revealed the existence of ferroelastic domains in the crystal. The structural basis for the occurence of ferroelasticity in this crystal is discussed and the high temperature space group is predicted.
Resumo:
Microstructural and superconducting properties of YBa2Cu3O7-x thin films grown in situ on bare sapphire by pulsed laser deposition using YBa2Cu3O7-x targets doped with 7 and 10 wt% Ag have been studied. Ag-doped films grown at 730 degrees C on sapphire have shown very significant improvement over the undoped YBa2Cu3O7-x films grown under identical condition. A zero resistance temperature of 90 K and a critical current density of 1.2 x 10(6) A/cm(2) at 77 K have been achieved on bare sapphire for the first time. Improved connectivity among grains and reduced reaction rate between the substrate and the film caused due to Ag in the film are suggested to be responsible for this greatly improved transport properties.
Resumo:
Studies on the low-humidity (88%) forms of tetragonal and monoclinic lysozyme, resulting from water-mediated transformations, have provided a wealth of information on the variability in protein hydration, its structural consequences and the water structure associated with proteins, in addition to facilitating the delineation of the rigid and the flexible regions in the protein molecule and the invariant features in its hydration shell. Surprisingly, monoclinic lysozyme continues to diffract even when the environmental humidity is drastically reduced, thus permitting the structural study of the enzyme at different levels of hydration. As part of a study in this direction, three very low humidity forms, two of them occuring at a nominal relative humidity of 38% and the other at 5% relative humidity, have been characterized. These have unprecedented low solvent contents of 16.9, 17.6 and 9.4%, respectively, as determined by the Matthews method.
Resumo:
Preparation and characterization of the fullerenes, C60 and C70, are described in detail, including the design of the generators fabricated locally. The characterization techniques employed are UV-visible, IR, Raman and C-13 NMR spectroscopies, scanning as well as transmission electron microscopy and mass spectrometry. The electron energy level diagram of C60 as well as the one-electron reductions of C60 and C70 leading to various anions are discussed. Electronic absorption spectra of C60- and C60(2-) are reported. Phase transitions from the plastic to the crystalline states of C60 and C70 are examined. Based on a C-13 NMR study in a mixture of nematic liquid crystals, it has been demonstrated that C60 retains its extraordinary symmetry in solution phase as well. Interaction of C60 and C70 with strong electron-donor molecules has been investigated employing cyclic voltammetry. Superconductivity of K(x)C60 has been studied by non-resonant microwave absorption; Na(x)C60 as well as K(c)C70 are shown to be non-superconducting. Doping C60 with iodine does not make it superconducting. Interaction of C60 with SbCl5 and liquid Br2 gives rise to halogenated products.
Resumo:
Cu (0.1 mol%) doped ZnO nanopowders have been successfully synthesized by a wet chemical method at a relatively low temperature (300 degrees C). Powder X-ray diffraction (PXRD) analysis, scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectroscopy, UV-Visible spectroscopy, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) measurements were used for characterization. PXRD results confirm that the nanopowders exhibit hexagonal wurtzite structure of ZnO without any secondary phase. The particle size of as-formed product has been calculated by Williamson-Hall (W-H) plots and Scherrer's formula is found to be in the range of similar to 40 nm. TEM image confirms the nano size crystalline nature of Cu doped ZnO. SEM micrographs of undoped and Cu doped ZnO show highly porous with large voids. UV-Vis spectrum showed a red shift in the absorption edge in Cu doped ZnO. PL spectra show prominent peaks corresponding to near band edge UV emission and defect related green emission in the visible region at room temperature and their possible mechanisms have been discussed. The EPR spectrum exhibits a broad resonance signal at g similar to 2.049, and two narrow resonances one at g similar to 1.990 and other at g similar to 1.950. The broad resonance signal at g similar to 2.049 is a characteristic of Cu2+ ion whereas the signal at g similar to 1.990 and g similar to 1.950 can be attributed to ionized oxygen vacancies and shallow donors respectively. The spin concentration (N) and paramagnetic susceptibility (X) have been evaluated and discussed. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Eu3+ (8 mol%) activated gadolinium oxide nanorods have been prepared by hydrothermal method without and with surfactant, cityl trimethyl ammonium bromide (CTAB). Powder X-ray diffraction (PXRD) studies reveal that the as-formed product is in hexagonal Gd(OH)(3):Eu phase and subsequent heat treatment at 350 and 600 degrees C transforms the sample to monoclinic GdOOH:Eu and cubic Gd2O3:Eu phases, respectively. The structural data and refinement parameters for cubic Gd2O3:Eu nanorods were calculated by the Rietveld refinement. SEM and TEM micrographs show that as-obtained Gd(OH)(3):Eu consists of uniform nanorods in high yield with uniform diameters of about 15 nm and lengths of about 50-150 nm. The temperature dependent morphological evolution of Gd2O3:Eu without and with CTAB surfactant was studied. FTIR studies reveal that CTAB surfactant plays an important role in converting cubic Gd2O3:Eu to hexagonal Gd(OH)(3):Eu. The strong and intense Raman peak at 489 cm(-1) has been assigned to A(g) mode, which is attributed to the hexagonal phase of Gd2O3. The peak at similar to 360 cm(-1) has been assigned to the combination of F-g and E-g modes, which is mainly attributed to the cubic Gd2O3 phase. The shift in frequency and broadening of the Raman modes have been attributed to the decrease in crystallite dimension to the nanometer scale as a result of phonon confinement. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Transport properties of quasicrystals in rapidly solidified as well as heat-treated Al65CU20Cr15 alloys were studied over a wide temperature range as a function of structure and microstructure. The characterization was done using x-ray diffraction, transmission electron microscopy and differential scanning calorimetry. Particular attention was paid to primitive to face-centered quasicrystalline transformation which occurs on annealing and the effect of microstructures on the transport behavior. The temperature dependence of resistivity is found to depend crucially on the microstructure of the alloy. Further, ordering enhances the negative temperature coefficient of resistivity. The low-temperature (T less than or equal to 25 K) resistivity of Al65Cu20Cr15 has been compared with that of Al63.5Cu24.5Fe12 alloy. In this region p(T) can be well described by a root T contribution arising from electron-electron interaction. We discuss our results in view of current theories.
Resumo:
A series of new photo-crosslinkable main-chain liquid-crystalline polymers containing bis(benzylidene)cycloalkanone units have been studied. These units in the polymers function as mesogens as well as photoactive centres. Polyesters with three different bis(4-hydroxybenzylidene)cycloalkanones corresponding to three cycloalkanones, namely cyclopentanone, cyclohexanone and cycloheptanone, have been prepared. Three dicarboxylic acids with ether linkages, which were derived from oligoethylene oxides, namely triethylene glycol, tetraethylene glycol and pentaethylene glycol, have been used as spacers in these polymers. Polymerization was carried out by both solution and interfacial polycondensation; the latter method gave high-molecular-weight polymers. Structural characterizations were done by ultra-violet, infra-red and H-1 nuclear magnetic resonance spectroscopy. Liquid-crystalline properties were studied by differential scanning calorimetry and polarized-light optical microscopy. These polymers show a nematic mesophase. Liquid-crystalline transition temperatures were correlated with polymer structure. The decrease in transition temperature with increase in cycloalkanone ring size was explained in terms of the change in geometrical anisotropy of bis(benzylidene)cycloalkanone units. MNDO (modified neglect of differential overlap) calculations were performed on the model compounds, bis(4-acetyloxybenzylidene)cycloalkanone to elucidate the geometrical variation of the mesogenic units with cycloalkanone ring size. Studies of photolysis reveal the two kinds of photoreactions that proceed in these polymer systems, namely photoisomerization and photo-crosslinking. The former reaction disrupts the parallel stacking of the chromophores and is reflected as an increase in the ultra-violet spectral intensity. The favourability of these two reactions depends on the mobility of the polymer chains. When the photolysis was done below T-g, photo-crosslinking dominates over photoisomerization. Above T-g, photoisomerization is followed by photo-crosslinking. The photosensitivity of the polymers decreases with increase in size of the cycloalkanone ring.
Resumo:
The influence of mechanical activation on the formation of Bi2VO5.5 bismuth vanadate (BiV) phase, was investigated by ball-milling a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The structural evolution of the desired BN phase, via an intermediate BiVO4,phase, was investigated using X-ray powder diffraction; (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). Milling for 54h. yielded monophasic gamma-BiV powders with an average crystallite size of 30 nm. The electron paramagnetic resonance (EPR) peaks associated with the V4+ ions are stronger and broader in nanocrystalline (n) BN than in the conventionally prepared microcrystalline (m) BN, suggesting theta significant portion of V5+ has been transformed to V4+ during milling. The optical bandgap of n-BiV was found to be higher than that of m-BiV. High density (97% of the theoretical density), fine-grained (average grain-size of 2 tun) ceramics with uniform grain-size distribution could be fabricated using n-BiV powders. These fine-grained ceramics exhibit improved dielectric, pyre and ferroelectric properties. (C) 1999 Elsevier Science S.A. All rights reserved.