323 resultados para Random solutions
Resumo:
A new theoretical equation for interaction parameter in multicomponent metallic solutions is developed using the pseudopotential formalism coupled with the free energy of the hard sphere system. The approximate expression for the pseudopotential term is given in terms of the heat of solution at infinite dilution, to allow easy evaluation of the interaction parameter in various multicomponent systems. This theory has been applied to 23 non-ferrous alloys based on Pb, Sn, Bi and indium. Comparison with the results of previous theoretical calculations using only the hard sphere model suggests that the inclusion of the pseudopotential term yields a quantitatively more correct prediction of interaction parameters in multicomponent metallic solutions. Numerical calculations were also made for 320 Fe-base solutions relevant to steelmaking and the agreement between calculation and experimental data appears reasonable, with 90% reliability in predicting the correct sign.
Resumo:
Thermodynamics of Cr-Mn alloys have been studied by Eremenko et al (l) using a fused salt e.m.f.technique. Their results indicate positive deviations from ideality at 1023 K. Kaufman (2) has independently estimated negative enthaipy and excess entropy for the b.c.c. Cr-Mn alloys, such that at high temperatures, the entropy term predominates over the enthalpy term giving positive deviations from ideality. Recently the thermodynamic properties of the alloys have been measured by 3acob (3) using a Knudsen cell technique in the temperature range of 1200 to 1500 K. The results indicate mild negative deviations from ideality over the entire composition range. Because of the differences in the reported results and Mn being a volatile component in the alloys which leads to surface depletion under a dynamic set up, an isopiestic technique is used to measure the properties of the alloys.
Resumo:
The different formalisms for the representation of thermodynamic data on dilute multicomponent solutions are critically reviewed. The thermodynamic consistency of the formalisms are examined and the interrelations between them are highlighted. The options are constraints in the use of the interaction parameter and Darken's quadratic formalisms for multicomponent solutions are discussed in the light of the available experimental data. Truncatred Maclaurin series expansion is thermodynamically inconsistent unless special relations between interaction parameters are invoked. However, the lack of strict mathematical consistency does not affect the practical use of the formalism. Expressions for excess partial properties can be integrated along defined composition paths without significant loss of accuracy. Although thermodynamically consistent, the applicability of Darken's quadratic formalism to strongly interacting systems remains to be established by experiment.
Resumo:
Random walks describe diffusion processes, where movement at every time step is restricted to only the neighboring locations. We construct a quantum random walk algorithm, based on discretization of the Dirac evolution operator inspired by staggered lattice fermions. We use it to investigate the spatial search problem, that is, to find a marked vertex on a d-dimensional hypercubic lattice. The restriction on movement hardly matters for d > 2, and scaling behavior close to Grover's optimal algorithm (which has no restriction on movement) can be achieved. Using numerical simulations, we optimize the proportionality constants of the scaling behavior, and demonstrate the approach to that for Grover's algorithm (equivalent to the mean-field theory or the d -> infinity limit). In particular, the scaling behavior for d = 3 is only about 25% higher than the optimal d -> infinity value.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d = 2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article A. Patel and M. A. Rahaman, Phys. Rev. A 82, 032330 (2010)] provides an O(root N ln N) algorithm, which is not optimal. The scaling behavior can be improved to O(root N ln N) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78, 012310 (2008)]. We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
The thermal reactivity of ammonium perchlorate was found to be dependent on the pH of the solution from which it had been crystallised. A nitric acid-crystallised sample reacted faster than an ammonium hydroxide-crystallised one.
Resumo:
Let n points be placed independently in d-dimensional space according to the density f(x) = A(d)e(-lambda parallel to x parallel to alpha), lambda, alpha > 0, x is an element of R-d, d >= 2. Let d(n) be the longest edge length of the nearest-neighbor graph on these points. We show that (lambda(-1) log n)(1-1/alpha) d(n) - b(n) converges weakly to the Gumbel distribution, where b(n) similar to ((d - 1)/lambda alpha) log log n. We also prove the following strong law for the normalized nearest-neighbor distance (d) over tilde (n) = (lambda(-1) log n)(1-1/alpha) d(n)/log log n: (d - 1)/alpha lambda <= lim inf(n ->infinity) (d) over tilde (n) <= lim sup(n ->infinity) (d) over tilde (n) <= d/alpha lambda almost surely. Thus, the exponential rate of decay alpha = 1 is critical, in the sense that, for alpha > 1, d(n) -> 0, whereas, for alpha <= 1, d(n) -> infinity almost surely as n -> infinity.
Resumo:
The conformational stability of Plasmodium falciparum triosephosphate isomerase (TIMWT) enzyme has been investigated in urea and guanidinium chloride (GdmCl) solutions using circular dichroism, fluorescence, and size-exclusion chromatography. The dimeric enzyme is remarkably stable in urea solutions. It retains considerable secondary, tertiary, and quaternary structure even in 8 M urea. In contrast, the unfolding transition is complete by 2.4 M GdmCl. Although the secondary as well as the tertiary interactions melt before the perturbation of the quaternary structure, these studies imply that the dissociation of the dimer into monomers ultimately leads to the collapse of the structure, suggesting that the interfacial interactions play a major role in determining multimeric protein stability. The Cm(urea)/Cm(GdmCl) ratio (where Cm is the concentration of the denaturant required at the transition midpoint) is unusually high for triosephosphate isomerase as compared to other monomeric and dimeric proteins. A disulfide cross-linked mutant protein (Y74C) engineered to form two disulfide cross-links across the interface (13-74‘) and (13‘-74) is dramatically destablized in urea. The unfolding transition is complete by 6 M urea and involves a novel mechanism of dimer dissociation through intramolecular thiol−disulfide exchange.
Resumo:
We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Theta(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Theta(root n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Theta(1) time units per sample, the delay increases to Theta(root n log n). The number of transmissions in both cases is Theta(n) per histogram sample. The achieved Theta(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Theta(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.
Resumo:
The present investigation of ion-acoustic waves is based on the study of the nonlinearity of plasma waves in a dispersive medium. Here the authors study ion-acoustic solitary waves in a warm ion plasma with non-isothermal electrons and then the results for solitary waves in a plasma with isothermal electrons are obtained. Incorporating the previous results obtained from the solitary wave solutions, the authors generalize the effect of negative ions on ion-acoustic waves in plasmas consisting of either a warm or cold ion species. A reflection phenomenon of ions in these waves is also studied. These results can be generalized, but the discussion is limited to a particular model of the plasma.
Resumo:
A new analytical model has been suggested for the hysteretic behaviour of beams. The model can be directly used in a response analysis without bothering to locate the precise point where the unloading commences. The model can efficiently simulate several types of realistic softening hysteretic loops. This is demonstrated by computing the response of cantilever beams under sinusoidal and random loadings. Results are presented in the form of graphs for maximum deflection, bending moment and shear
Resumo:
Consider L independent and identically distributed exponential random variables (r.vs) X-1, X-2 ,..., X-L and positive scalars b(1), b(2) ,..., b(L). In this letter, we present the probability density function (pdf), cumulative distribution function and the Laplace transform of the pdf of the composite r.v Z = (Sigma(L)(j=1) X-j)(2) / (Sigma(L)(j=1) b(j)X(j)). We show that the r.v Z appears in various communication systems such as i) maximal ratio combining of signals received over multiple channels with mismatched noise variances, ii)M-ary phase-shift keying with spatial diversity and imperfect channel estimation, and iii) coded multi-carrier code-division multiple access reception affected by an unknown narrow-band interference, and the statistics of the r.v Z derived here enable us to carry out the performance analysis of such systems in closed-form.