173 resultados para Railway level crossing
Resumo:
A current-error space phasor based hysteresis controller with nearly constant switching frequency is proposed for a general n-level voltage source inverter fed three-phase induction motor drive. Like voltage-controlled space vector PWM (SVPWM), the proposed controller can precisely detect sub-sector changes and for switching it selects only the nearest switching voltage vectors using the information of the estimated fundamental stator voltages along α and β axes. It provides smooth transition between voltage levels, including operation in over modulation region. Due to adjacent switching amongst the nearest switching vectors forming a triangular sub-sector, in which tip of the fundamental stator voltage vector of the machine lies, switching loss is reduced while keeping the current-error space phasor within the varying parabolic boundary. Appropriate dimension and orientation of this parabolic boundary ensures similar switching frequency spectrum like constant switching frequency SVPWM-based induction motor (IM) drive. Inherent advantages of multi-level inverter and space phasor based current hysteresis controller are retained. The proposed controller is simulated as well as implemented on a 5-level inverter fed 7.5 kW open-end winding IM drive.
Resumo:
A current-error space-vector-based hysteresis current controller for a general n-level voltage-source inverter (VSI)-fed three-phase induction motor (IM) drive is proposed here, with control of the switching frequency variation for the full linear modulation range. The proposed current controller monitors the space-vector-based current error of an n-level VSI-fed IM to keep the current error within a parabolic boundary, using the information of the current triangular sector in which the tip of the reference vector lies. Information of the reference voltage vector is estimated using the measured current-error space vectors, along the alpha- and beta-axes. Appropriate dimension and orientation of this parabolic boundary ensure a switching frequency spectrum similar to that of a constant-switching-frequency voltage-controlled space vector pulsewidth modulation (PWM) (SVPWM)-based IM drive. Like SVPWM for multilevel inverters, the proposed controller selects inverter switching vectors, forming a triangular sector in which the tip of the reference vector stays, for the hysteresis PWM control. The sector in the n-level inverter space vector diagram, in which the tip of the fundamental stator voltage stays, is precisely detected, using the sampled reference space vector estimated from the instantaneous current-error space vectors. The proposed controller retains all the advantages of a conventional hysteresis controller such as fast current control, with smooth transition to the overmodulation region. The proposed controller is implemented on a five-level VSI-fed 7.5-kW IM drive.
Resumo:
A $k$-box $B=(R_1,...,R_k)$, where each $R_i$ is a closed interval on the real line, is defined to be the Cartesian product $R_1\times R_2\times ...\times R_k$. If each $R_i$ is a unit length interval, we call $B$ a $k$-cube. Boxicity of a graph $G$, denoted as $\boxi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-boxes. Similarly, the cubicity of $G$, denoted as $\cubi(G)$, is the minimum integer $k$ such that $G$ is an intersection graph of $k$-cubes. It was shown in [L. Sunil Chandran, Mathew C. Francis, and Naveen Sivadasan: Representing graphs as the intersection of axis-parallel cubes. MCDES-2008, IISc Centenary Conference, available at CoRR, abs/cs/ 0607092, 2006.] that, for a graph $G$ with maximum degree $\Delta$, $\cubi(G)\leq \lceil 4(\Delta +1)\log n\rceil$. In this paper, we show that, for a $k$-degenerate graph $G$, $\cubi(G) \leq (k+2) \lceil 2e \log n \rceil$. Since $k$ is at most $\Delta$ and can be much lower, this clearly is a stronger result. This bound is tight. We also give an efficient deterministic algorithm that runs in $O(n^2k)$ time to output a $8k(\lceil 2.42 \log n\rceil + 1)$ dimensional cube representation for $G$. An important consequence of the above result is that if the crossing number of a graph $G$ is $t$, then $\boxi(G)$ is $O(t^{1/4}{\lceil\log t\rceil}^{3/4})$ . This bound is tight up to a factor of $O((\log t)^{1/4})$. We also show that, if $G$ has $n$ vertices, then $\cubi(G)$ is $O(\log n + t^{1/4}\log t)$. Using our bound for the cubicity of $k$-degenerate graphs we show that cubicity of almost all graphs in $\mathcal{G}(n,m)$ model is $O(d_{av}\log n)$, where $d_{av}$ denotes the average degree of the graph under consideration. model is O(davlogn).
Resumo:
Analysis of high resolution satellite images has been an important research topic for urban analysis. One of the important features of urban areas in urban analysis is the automatic road network extraction. Two approaches for road extraction based on Level Set and Mean Shift methods are proposed. From an original image it is difficult and computationally expensive to extract roads due to presences of other road-like features with straight edges. The image is preprocessed to improve the tolerance by reducing the noise (the buildings, parking lots, vegetation regions and other open spaces) and roads are first extracted as elongated regions, nonlinear noise segments are removed using a median filter (based on the fact that road networks constitute large number of small linear structures). Then road extraction is performed using Level Set and Mean Shift method. Finally the accuracy for the road extracted images is evaluated based on quality measures. The 1m resolution IKONOS data has been used for the experiment.
Resumo:
Space vector based PWM strategies for three-level inverters have a broader choice of switching sequences to generate the required reference vector than triangle comparison based PWM techniques. However, space vector based PWM involves numerous steps which are computationally intensive. A simplified algorithm is proposed here, which is shown to reduce the computation time significantly. The developed algorithm is used to implement synchronous and asynchronous conventional space vector PWM, synchronized modified space vector PWM and an asynchronous advanced bus-clamping PWM technique on a low-cost dsPIC digital controller. Experimental results are presented for a comparative evaluation of the performance of different PWM methods.
Resumo:
This paper presents an analysis and comparison between two circuit topologies of the 3-phase, 3-level unity power factor (Vienna) rectifier on the basis of packaging issues and semiconductor power losses. The analysis indicates the suitability of one particular circuit variant due to restrictions on switching frequency at higher power levels. A comparison is also done between hysteresis and carrier based PWM strategies for current control of the rectifier, along with experimental evaluation of the control strategies on a hardware prototype of the rectifier. The comparison indicates that the carrier based modulation strategy is better suited for use with higher order filters that are utilized in high power applications.
Resumo:
We present the selective sensing of multiple transition metal ions in water using a synthetic single probe. The probe is made up of pyrene and pyridine as signaling and interacting moiety, respectively. The sensor showed different responses toward metal ions just by varying the medium of detection. In organic solvent (acetonitrile), the probe showed selective detection of Hg2+ ion. In water, the fluorescence quenching was observed with three metal ions, Cu2+, Hg2+, and Ni2+. Further, just by varying the surface charge on the micellar aggregates, the probe could detect and discriminate the above-mentioned three different toxic metal ions appropriately. In neutral micelles (Brij 58), the probe showed a selective interaction with Hg2+ ion as observed in acetonitrile medium. However, in anionic micellar medium (sodium dodecyl sulfate, SDS), the probe showed changes with both Cu2+ and Ni2+. under UV-vis absorption spectroscopy. The discrimination between these two ions was achieved by recording their emission spectra, where it showed selective quenching with Cu2+.
Resumo:
An analytical expression is derived for calculating the rms current through the DC link capacitor in a three level inverter. The output current of the inverter is assumed to sinusoidal. Variations in the capacitor rms current with modulation index as well as line side power factor are studied. The worst case current stress on the capacitor is determined. This is required for sizing the capacitor and is useful for predicting the capacitor losses and life. The analytical expression derived is validated through simulations and experimental results at a number of operating points.
Resumo:
Multilevel inverters with hexagonal and dodecagonal voltage space vector structures have improved harmonic profile compared to two level inverters. Further improvement in the quality of the waveform is possible using multilevel octadecagonal (18 sided polygon) voltage space vectors. This paper proposes an inverter circuit topology capable of generating multilevel octadecagonal voltage space vectors, by cascading two asymmetric three level inverters. By proper selection of DC link voltages and the resultant switching states for the inverters, voltage space vectors, whose tips lie on three concentric octadecagons, are obtained. The advantages of octadecagonal voltage space vector based PWM techniques are the complete elimination of fifth, seventh, eleventh and thirteenth harmonics in phase voltages and the extension of linear modulation range. In this paper, a simple PWM timing calculation method is also proposed. Matlab simulation results and experimental results have been presented in this paper to validate the proposed concept.
A nine-level inverter topology for medium-voltage induction motor drive with open-end stator winding
Resumo:
A new scheme for nine-level voltage space-vector generation for medium-voltage induction motor (IM) drives with open-end stator winding is presented in this paper. The proposed nine-level power converter topology consists of two conventional three-phase two-level voltage source inverters powered by isolated dc sources and six floating-capacitor-connected H-bridges. The H-bridge capacitor voltages are effectively maintained at the required asymmetrical levels by employing a space vector modulation (SVPWM) based control strategy. An interesting feature of this topology is its ability to function in five-or three-level mode, in the entire modulation range, at full-power rating, in the event of any failure in the H-bridges. This feature significantly improves the reliability of the proposed drive system. Each leg of the three-phase two-level inverters used in this topology switches only for a half cycle of the reference voltage waveform. Hence, the effective switching frequency is reduced by half, resulting in switching loss reduction in high-voltage devices. The transient as well as the steady-state performance of the proposed nine-level inverter-fed IM drive system is experimentally verified in the entire modulation range including the overmodulation region.
Resumo:
The name `Seven Pagodas' has served as a nickname for the south Indian port of Mahabalipuram since the early European explorers used it as landmark for navigation as they could see summits of seven temples from the sea. There are many theories concerning the name Seven Pagodas. The present study has compared coastline and adjacent seven monuments illustrated in a 17th century Portolan Chart (maritime map) with recent remote sensing data. This analysis throws new light on the name ``Seven Pagodas'' for the city. This study has used DEM of the site to simulate the coastline which is similar to the one depicted in the old portolan chart. Through this, the then sea level and corresponding flooding extent according to topography of the area and their effect on monuments could be analyzed. Most importantly this work has in the process identified possibly the seven monuments that constituted the name Seven Pagodas and this provides an alternative explanation to one of the mysteries of history. This work has demonstrated unique method of studying coastal archaeological sites. As large numbers of heritage sites around the world are on coastlines, this methodology has potential to be very useful for coastal heritage preservation and management.
Resumo:
This paper proposes a new 3 level common mode voltage eliminated inverter using an inverter structure formed by cascading a H-Bridge with a three-level flying capacitor inverter. The three phase space vector polygon formed by this configuration and the polygon formed by the common-mode eliminated states have been discussed. The entire system is simulated in Simulink and the results are experimentally verified. This system has an advantage that if one of devices in the H-Bridge fails, the system can still be operated as a normal 3 level inverter mode at full power. This inverter has many advantages like use of single DC-supply, making it possible for a back to back grid-tied converter application, improved reliability etc.
Resumo:
The contour tree is a topological abstraction of a scalar field that captures evolution in level set connectivity. It is an effective representation for visual exploration and analysis of scientific data. We describe a work-efficient, output sensitive, and scalable parallel algorithm for computing the contour tree of a scalar field defined on a domain that is represented using either an unstructured mesh or a structured grid. A hybrid implementation of the algorithm using the GPU and multi-core CPU can compute the contour tree of an input containing 16 million vertices in less than ten seconds with a speedup factor of upto 13. Experiments based on an implementation in a multi-core CPU environment show near-linear speedup for large data sets.
Resumo:
Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.