181 resultados para REFINEMENT
Resumo:
Estimating program worst case execution time(WCET) accurately and efficiently is a challenging task. Several programs exhibit phase behavior wherein cycles per instruction (CPI) varies in phases during execution. Recent work has suggested the use of phases in such programs to estimate WCET with minimal instrumentation. However the suggested model uses a function of mean CPI that has no probabilistic guarantees. We propose to use Chebyshev's inequality that can be applied to any arbitrary distribution of CPI samples, to probabilistically bound CPI of a phase. Applying Chebyshev's inequality to phases that exhibit high CPI variation leads to pessimistic upper bounds. We propose a mechanism that refines such phases into sub-phases based on program counter(PC) signatures collected using profiling and also allows the user to control variance of CPI within a sub-phase. We describe a WCET analyzer built on these lines and evaluate it with standard WCET and embedded benchmark suites on two different architectures for three chosen probabilities, p={0.9, 0.95 and 0.99}. For p= 0.99, refinement based on PC signatures alone, reduces average pessimism of WCET estimate by 36%(77%) on Arch1 (Arch2). Compared to Chronos, an open source static WCET analyzer, the average improvement in estimates obtained by refinement is 5%(125%) on Arch1 (Arch2). On limiting variance of CPI within a sub-phase to {50%, 10%, 5% and 1%} of its original value, average accuracy of WCET estimate improves further to {9%, 11%, 12% and 13%} respectively, on Arch1. On Arch2, average accuracy of WCET improves to 159% when CPI variance is limited to 50% of its original value and improvement is marginal beyond that point.
Synthesis, structure, characterization and photocatalytic activity of Bi2Zr2O7 under solar radiation
Resumo:
Bi2Zr2O7 was synthesized via a facile solution combustion method. Two different fuels, urea and tartaric acid were used in the synthesis, which resulted in Bi2Zr2O7 crystals with different band gaps and surface areas. The structure has been determined by Rietveld refinement followed by the difference Fourier technique. The compound crystallizes in the space group Fm (3) over barm. The photocatalytic degradation of two dyes was carried out under solar radiation. Bi2Zr2O7 prepared using urea as the fuel exhibits a higher photocatalytic activity than the compound prepared using tartaric acid and comparable activity to that of commercial Evonik P-25 TiO2. It is suggested that this is due to the oxygen vacancies occurring in the two cases, the urea based compound has an occupancy of 0.216, whereas the tartaric acid based synthesis shows disorder in the oxygen position amounting to a small number of oxygen vacancies.
Resumo:
Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.
Resumo:
Cementite dissolution in cold-drawn pearlitic steel (0.8 wt.% carbon) wires has been studied by quantitative X-ray diffraction (XRD) and Mossbauer spectroscopy up to drawing strain 1.4. Quantification of cementite-phase fraction by Rietveld analysis has confirmed more than 50% dissolution of cementite phase at drawing strain 1.4. It is found that the lattice parameter of the ferrite phase determined by Rietveld refinement procedure remains nearly unchanged even after cementite dissolution. This confirms that the carbon atoms released after cementite dissolution do not dissolve in the ferrite lattice as Fe-C interstitial solid solution. Detailed analysis of broadening of XRD line profiles for the ferrite phase shows high density of dislocations (approximate to 10(15)/m(2)) in the ferrite matrix at drawing strain 1.4. The results suggest a dominant role of 111 screw dislocations in the cementite dissolution process. Post-deformation heat treatment leads to partial annihilation of dislocations and restoration of cementite phase. Based on these experimental observations, further supplemented by TEM studies, we have suggested an alternative thermodynamic mechanism of the dissolution process.
Resumo:
The increasing number of available protein structures requires efficient tools for multiple structure comparison. Indeed, multiple structural alignments are essential for the analysis of function, evolution and architecture of protein structures. For this purpose, we proposed a new web server called multiple Protein Block Alignment (mulPBA). This server implements a method based on a structural alphabet to describe the backbone conformation of a protein chain in terms of dihedral angles. This sequence-like' representation enables the use of powerful sequence alignment methods for primary structure comparison, followed by an iterative refinement of the structural superposition. This approach yields alignments superior to most of the rigid-body alignment methods and highly comparable with the flexible structure comparison approaches. We implement this method in a web server designed to do multiple structure superimpositions from a set of structures given by the user. Outputs are given as both sequence alignment and superposed 3D structures visualized directly by static images generated by PyMol or through a Jmol applet allowing dynamic interaction. Multiple global quality measures are given. Relatedness between structures is indicated by a distance dendogram. Superimposed structures in PDB format can be also downloaded, and the results are quickly obtained. mulPBA server can be accessed at www.dsimb.inserm.fr/dsimb_tools/mulpba/.
Resumo:
Thermoluminescence properties of YAlO3:Dy3+ nanophosphor prepared by a low temperature solution combustion (SC) method using oxalyl dihydrazide as a fuel were studied and the results were compared to bulk phosphor prepared by solid state (SS) synthesis. Powder X-ray diffraction patterns confirm the orthorhombic phase of SC and SS methods. Rietveld refinement was used to estimate the cell parameters of undoped and Dy3+ doped YAlO3. Scanning electron micrographs reveal dumbbell shape particles. Electron paramagnetic resonance spectra of YAlO3:Dy3+ nanophosphors were studied at 293 K, 77 K and 10 K. Thermoluminescence responses of SC and SS prepared phosphor were studied using gamma irradiation in the dose range 0.1-6 kGy at a warming rate of 1 degrees C s (1) at room temperature (RT). The optimized concentrations of Dy3+ ions in YAlO3 was found to be 3 mol%. The trapping parameters (i. e. activation energy, frequency factor, order of kinetic) of all the individual peaks of the glow curves have been analysed by using Chen's method. The low fading and linear response in the wide range (0.1-1 kGy) suggests the possibility of usage of SC prepared phosphor in dosimeter applications. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B4C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B4C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B4C)(BM) hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B4C)(BM) hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + xB(4)C)(BM) hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B4C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B4C addition. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The structural, magnetic and dielectric properties of nano zinc ferrite prepared by the propellant chemistry technique are studied. The PXRD measurement at room temperature reveal that the compound is in cubic spinel phase, belong to the space group Fd (3) over barm. The unit cell parameters have been estimated from Rietveld refinement. The calculated force constants from FTIR spectrum corresponding to octahedral and tetrahedral sites at 375 and 542 cm(-1) are 6.61 x 10(2) and 3.77 x 10(2) N m(-1) respectively; these values are slightly higher compared to the other ferrite systems. Magnetic hysteresis and EPR spectra show superparamagnetic property nearly to room temperature due to comparison values between magnetic anisotropy energy and the thermal energy. The calculated values of saturation magnetization, remenant magnetization, coercive field and magnetic moment supports for the existence of multi domain particles in the sample. The temperature dependent magnetic field shows the spin freezing state at 30 K and the blocking temperature at above room temperature. The frequency dependent dielectric interactions show the variation of dielectric constant, dielectric loss and impedance as similar to other ferrite systems. The AC conductivity in the prepared sample is due to the presence of electrons, holes and polarons. The synthesized material is suitable for nano-electronics and biomedical applications. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Pure cubic zirconia (ZrO2) nanopowder is prepared for the first time by simple low temperature solution combustion method without calcination. The product is characterized by Powder X-ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier Transform Infra Red spectroscopy (FTIR) and Ultraviolet-Visible spectroscopy (UV-Vis). The PXRD showed the formation of pure stable cubic ZrO2 nanopowders with average crystallite size ranging from 6 to 12 nm. The lattice parameters were calculated from Rietveld refinement method. SEM micrograph shows fluffy, mesoporous, agglomerated particles with large number of voids. TEM micrograph shows honey comb like arrangement of particles with particle size similar to 10 nm. The PL emission spectrum excited at 210 nm and 240 nm consists of intense bands centered at similar to 365 and similar to 390 nm. Both the samples show shoulder peak at 420 nm, along with four weak emission bands at similar to 484, similar to 528, similar to 614 and similar to 726 nm. TL studies were carried out pre-irradiating samples with gamma-rays ranging from 1 to 5 KGy at room temperature. A well resolved glow peak at 377 degrees C is recorded which can be ascribed to deep traps. With increase in gamma radiation there is linear increase in TL intensity which shows the possible use of ZrO2 as dosimetric material. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this study, the effect of nano-B4C addition on the microstructural and the mechanical behavior of pure Mg are investigated. Pure Mg-metal reinforced with different amounts of nano-size B4C particulates were synthesized using the disintegrated melt deposition technique followed by hot extrusion. Microstructural characterization of the developed Mg/x-B4C composites revealed uniform distribution of nano-B4C particulates and significant grain refinement. Electron back scattered diffraction (EBSD) analyses showed presence of relatively more recrystallized grains and absence of fiber texture in Mg/B4C nanocomposites when compared to pure Mg. The evaluation of mechanical properties indicated a significant improvement in tensile properties of the composites. The significant improvement in tensile ductility (similar to 180% increase with respect to pure Mg) is among the highest observed when compared to the pure Mg based nanocomposites existing in the current literature. The superior mechanical properties of the Mg/B4C nanocomposites are attributed to the uniform distribution of the nanoparticles and the tendency for texture randomization (absence of fiber texture) achieved due to the nano-B4C addition. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Graphene oxide and reduced graphene oxide (r-GO) were synthesized by wet chemistry and the effect of r-GO in PS-PVME blends was investigated here with respect to phase miscibility, intermolecular cooperativity in the glass transition region and concentration fluctuation variance by shear rheology and dielectric spectroscopy. The spinodal decomposition temperature (T-s) and correlation length were evaluated from isochronal temperature scans in shear rheology. The r-GO is shown to induce miscibility in the blends, which may lead to increased local heterogeneity in the blends, though the length of cooperatively re-arranged regions (xi) at T-g is more or less unaltered. The evolution of the phase morphology as a function of temperature was assessed using polarized optical microscopy (POM). In the case of the 60/40 PS-PVME blends with 0.25 wt% r-GO, apart from significant refinement in the morphology, retention of the interconnected ligaments of PVME was observed, even in the late stages of phase separation suggesting that the coarsening of the phase morphology has been slowed down in the presence of r-GO. This phenomenon was also supported by AFM. Surface enrichment of PVME, owing to its lower surface tension, in the demixed samples was supported by XPS scans. The interconnected network of PVME has resulted in significantly higher permittivity in the bi-phasic blends, although the concentration of r-GO is below the percolation threshold.
Resumo:
The addition of B, up to about 0.1 wt%, to Ti-6Al-4V (Ti64) reduces its as-cast grain and colony sizes by an order of magnitude. In this paper, the creep resistance of this alloy modified with 0.06 and 0.11 wt% B additions was investigated in the temperature range of 475-550 degrees C and compared with that of the base alloy. Conventional dead-weight creep tests as well as stress relaxation tests were employed for this purpose. Experimental results show that the B addition enhances both elevated temperature strength and creep properties of Ti64, especially at the lower end of the temperatures investigated. The steady state creep rate in the alloy with 0.11 wt% B was found to be an order of magnitude lower than that in the base alloy, and both the strain at failure as well as the time for rupture increases with the B content. These marked improvements in the creep resistance due to B addition to Ti64 were attributed primarily to the increased number of inter-phase interfaces - a direct consequence of the microstructural refinement that occurs with the B addition - that provide resistance to dislocation motion. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Isoniazid (isonicotinohydrazide) is an important first-line antitubercular drug that targets the InhA enzyme which synthesizes the critical component of the mycobacterial cell wall. An experimental charge-density analysis of isoniazid has been performed to understand its structural and electronic properties in the solid state. A high-resolution single-crystal X-ray intensity data has been collected at 90 K. An aspherical multipole refinement was carried out to explore the topological and electrostatic properties of the isoniazid molecule. The experimental results were compared with the theoretical charge-density calculations performed using CRYSTAL09 with the B3LYP/6-31G** method. A topological analysis of the electron density reveals that the Laplacian of electron density of the N-N bond is significantly less negative, which indicates that the charges at the b.c.p. (bond-critical point) of the bond are least accumulated, and so the bond is considered to be weak. As expected, a strong negative electrostatic potential region is present in the vicinity of the O1, N1 and N3 atoms, which are the reactive locations of the molecule. The C-H center dot center dot center dot N, C-H center dot center dot center dot O and N-H center dot center dot center dot N types of intermolecular hydrogen-bonding interactions stabilize the crystal structure. The topological analysis of the electron density on hydrogen bonding shows the strength of intermolecular interactions.
Resumo:
Pyridoxal kinase (PdxK; EC 2.7.1.35) belongs to the phosphotransferase family of enzymes and catalyzes the conversion of the three active forms of vitamin B-6, pyridoxine, pyridoxal and pyridoxamine, to their phosphorylated forms and thereby plays a key role in pyridoxal 5 `-phosphate salvage. In the present study, pyridoxal kinase from Salmonella typhimurium was cloned and overexpressed in Escherichia coli, purified using Ni-NTA affinity chromatography and crystallized. X-ray diffraction data were collected to 2.6 angstrom resolution at 100 K. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unitcell parameters a = 65.11, b = 72.89, c = 107.52 angstrom. The data quality obtained by routine processing was poor owing to the presence of strong diffraction rings caused by a polycrystalline material of an unknown small molecule in all oscillation images. Excluding the reflections close to powder/polycrystalline rings provided data of sufficient quality for structure determination. A preliminary structure solution has been obtained by molecular replacement with the Phaser program in the CCP4 suite using E. coli pyridoxal kinase (PDB entry 2ddm) as the phasing model. Further refinement and analysis of the structure are likely to provide valuable insights into catalysis by pyridoxal kinases.
Resumo:
BiEuO3 (BE) and BiGdO3 (BG) are synthesized by the solid-state reaction technique. Rietveld refinement of the X-ray diffraction data shows that the samples are crystallized in cubic phase at room temperature having Fm3m symmetry with the lattice parameters of 5.4925(2) and 5.4712(2) A for BE and BG, respectively. Raman spectra of the samples are investigated to obtain the phonon modes of the samples. The dielectric properties of the samples are investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. An analysis of the real and imaginary parts of impedance is performed assuming a distribution of relaxation times as confirmed by the Cole-Cole plots. The frequency-dependent maxima in the loss tangent are found to obey an Arrhenius law with activation energy similar to 1 eV for both the samples. The frequency-dependent electrical data are also analyzed in the framework of conductivity formalism. Magnetization of the samples are measured under the field cooled (EC) and zero field cooled (ZFC) modes in the temperature range from 5 K to 300 K applying a magnetic Field of 500 Oe. The FC and ZFC susceptibilities show that BE is a Van Vleck paramagnetic material with antiferromagnetic coupling at low temperature whereas BG is an anti-ferromagnetic system. The results are substantiated by the M-11 loops of the materials taken at 5 K in the ZFC mode. (C) 2014 Elsevier B.V. All rights reserved