228 resultados para Quantum walks


Relevância:

20.00% 20.00%

Publicador:

Resumo:

NMR spectra of molecules oriented in liquid-crystalline matrix provide information on the structure and orientation of the molecules. Thermotropic liquid crystals used as an orienting media result in the spectra of spins that are generally strongly coupled. The number of allowed transitions increases rapidly with the increase in the number of interacting spins. Furthermore, the number of single quantum transitions required for analysis is highly redundant. In the present study, we have demonstrated that it is possible to separate the subspectra of a homonuclear dipolar coupled spin system on the basis of the spin states of the coupled heteronuclei by multiple quantum (MQ)−single quantum (SQ) correlation experiments. This significantly reduces the number of redundant transitions, thereby simplifying the analysis of the complex spectrum. The methodology has been demonstrated on the doubly 13C labeled acetonitrile aligned in the liquid-crystal matrix and has been applied to analyze the complex spectrum of an oriented six spin system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a self-consistent Poisson-Schr¨odinger scheme including the effects of the piezoelectricity, the spontaneous polarization and the charge density on the electronic states and the quasi-Fermi level energy in wurtzite type semiconductor heterojunction and quantum-laser.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard quantum search algorithm lacks a feature, enjoyed by many classical algorithms, of having a fixed-point, i.e. a monotonic convergence towards the solution. Here we present two variations of the quantum search algorithm, which get around this limitation. The first replaces selective inversions in the algorithm by selective phase shifts of $\frac{\pi}{3}$. The second controls the selective inversion operations using two ancilla qubits, and irreversible measurement operations on the ancilla qubits drive the starting state towards the target state. Using $q$ oracle queries, these variations reduce the probability of finding a non-target state from $\epsilon$ to $\epsilon^{2q+1}$, which is asymptotically optimal. Similar ideas can lead to robust quantum algorithms, and provide conceptually new schemes for error correction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on silicon nitride/Si (111) substrate by droplet epitaxy. Single-crystalline structure of InN QDs was verified by transmission electron microscopy, and the chemical bonding configurations of InN QDs were examined by x-ray photoelectron spectroscopy. Photoluminescence measurement shows a slight blue shift compared to the bulk InN, arising from size dependent quantum confinement effect. The interdigitated electrode pattern was created and current-voltage (I-V) characteristics of InN QDs were studied in a metal-semiconductor-metal configuration in the temperature range of 80-300K. The I-V characteristics of lateral grown InN QDs were explained by using the trap model. (C) 2011 American Institute of Physics. [doi:10.1063/1.3651762]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

InN quantum dots (QDs) were grown on Si (111) by epitaxial Stranski-Krastanow growth mode using plasma-assisted molecular beam epitaxy. Single-crystalline wurtzite structure of InN QDs was verified by the x-ray diffraction and transmission electron microscopy. Scanning tunneling microscopy has been used to probe the structural aspects of QDs. A surface bandgap of InN QDs was estimated from scanning tunneling spectroscopy (STS) I-V curves and found that it is strongly dependent on the size of QDs. The observed size-dependent STS bandgap energy shifts with diameter and height were theoretical explained based on an effective mass approximation with finite-depth square-well potential model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on our study of the edge of the 2/5 fractional quantum Hall state, which is more complicated than the edge of the 1/3 state because of the presence of edge sectors corresponding to different partitions of composite fermions in the lowest two Lambda levels. The addition of an electron at the edge is a nonperturbative process and it is not a priori obvious in what manner the added electron distributes itself over these sectors. We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in the [N(1), N(2)] sector, where N(1) and N(2) are the numbers of composite fermions in the lowest two Lambda levels, the resulting state lies in either [N(1) + 1, N(2)] or [N(1), N(2) + 1] sectors; adding an electron at the edge is thus equivalent to adding a composite fermion at the edge. The coupling to other sectors of the form [N(1) + 1 + k, N(2) - k], k integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with the two-boson model of the 2/5 edge. We compute the spectral weights and find that while the individual spectral weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the 2/5 edge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the time-dependent transitions of a quantum-forced harmonic oscillator in noncommutative R(1,1) perturbatively to linear order in the noncommutativity theta. We show that the Poisson distribution gets modified, and that the vacuum state evolves into a `squeezed' state rather than a coherent state. The time evolutions of uncertainties in position and momentum in vacuum are also studied and imply interesting consequences for modeling nonlinear phenomena in quantum optics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a simplified theoretical formulation of the Fowler-Nordheim field emission (FNFE) under magnetic quantization and also in quantum wires of optoelectronic materials on the basis of a newly formulated electron dispersion law in the presence of strong electric field within the framework of k.p formalism taking InAs, InSb, GaAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x) As(y)P(1-y) lattice matched to InP as examples. The FNFE exhibits oscillations with inverse quantizing magnetic field and electron concentration due to SdH effect and increases with increasing electric field. For quantum wires the FNFE increases with increasing film thickness due to the existence van-Hove singularity and the magnitude of the quantum jumps are not of same height indicating the signature of the band structure of the material concerned. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the field current varies in various manners with all the variables in all the limiting cases as evident from all the curves, the rates of variations are totally band-structure dependent. Under certain limiting conditions, all the results as derived in this paper get transformed in to well known Fowler-Nordheim formula. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the scaling behavior of the fidelity (F) in the thermodynamic limit using the examples of a system of Dirac fermions in one dimension and the Kitaev model on a honeycomb lattice. We show that the thermodynamic fidelity inside the gapless as well as gapped phases follow power-law scalings, with the power given by some of the critical exponents of the system. The generic scaling forms of F for an anisotropic quantum critical point for both the thermodynamic and nonthermodynamic limits have been derived and verified for the Kitaev model. The interesting scaling behavior of F inside the gapless phase of the Kitaev model is also discussed. Finally, we consider a rotation of each spin in the Kitaev model around the z axis and calculate F through the overlap between the ground states for the angle of rotation eta and eta + d eta, respectively. We thereby show that the associated geometric phase vanishes. We have supplemented our analytical calculations with numerical simulations wherever necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations were carried out on the ambient condition oxidation of self-assembled, fairly uniform indium nitride (InN) quantum dots (QDs) fabricated on p-Si substrates. Incorporation of oxygen in to the outer shell of the QDs was confirmed by the results of transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS). As a consequence, a weak emission at high energy (similar to 1.03?eV) along with a free excitonic emission (0.8?eV) was observed in the photoluminescence spectrum. The present results confirm the incorporation of oxygen into the lattice of the outer shell of InN QDs, affecting their emission properties. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim