212 resultados para QUANTUM-EFFICIENCY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avoiding the loss of coherence of quantum mechanical states is an important prerequisite for quantum information processing. Dynamical decoupling (DD) is one of the most effective experimental methods for maintaining coherence, especially when one can access only the qubit system and not its environment (bath). It involves the application of pulses to the system whose net effect is a reversal of the system-environment interaction. In any real system, however, the environment is not static, and therefore the reversal of the system-environment interaction becomes imperfect if the spacing between refocusing pulses becomes comparable to or longer than the correlation time of the environment. The efficiency of the refocusing improves therefore if the spacing between the pulses is reduced. Here, we quantify the efficiency of different DD sequences in preserving different quantum states. We use C-13 nuclear spins as qubits and an environment of H-1 nuclear spins as the environment, which couples to the qubit via magnetic dipole-dipole couplings. Strong dipole-dipole couplings between the proton spins result in a rapidly fluctuating environment with a correlation time of the order of 100 mu s. Our experimental results show that short delays between the pulses yield better performance if they are compared with the bath correlation time. However, as the pulse spacing becomes shorter than the bath correlation time, an optimum is reached. For even shorter delays, the pulse imperfections dominate over the decoherence losses and cause the quantum state to decay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we focus on the performance of a nanowire field-effect transistor in the ultimate quantum capacitance limit (UQCL) (where only one subband is occupied) in the presence of interface traps (D-it), parasitic capacitance (C-L), and source/drain series resistance (R-s,R-d), using a ballistic transport model and compare the performance with its classical capacitance limit (CCL) counterpart. We discuss four different aspects relevant to the present scenario, namely: 1) gate capacitance; 2) drain-current saturation; 3) subthreshold slope; and 4) scaling performance. To gain physical insights into these effects, we also develop a set of semianalytical equations. The key observations are as follows: 1) A strongly energy-quantized nanowire shows nonmonotonic multiple-peak C-V characteristics due to discrete contributions from individual subbands; 2) the ballistic drain current saturates better in the UQCL than in the CCL, both in the presence and absence of D-it and R-s,R-d; 3) the subthreshold slope does not suffer any relative degradation in the UQCL compared to the CCL, even with Dit and R-s,R-d; 4) the UQCL scaling outperforms the CCL in the ideal condition; and 5) the UQCL scaling is more immune to R-s,R-d, but the presence of D-it and C-L significantly degrades the scaling advantages in the UQCL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have derived explicitly, the large scale distribution of quantum Ohmic resistance of a disordered one-dimensional conductor. We show that in the thermodynamic limit this distribution is characterized by two independent parameters for strong disorder, leading to a two-parameter scaling theory of localization. Only in the limit of weak disorder we recover single parameter scaling, consistent with existing theoretical treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a physically based analytical quantum threshold voltage model for the triple gate long channel metal oxide semiconductor field effect transistor is developed The proposed model is based on the analytical solution of two-dimensional Poisson and two-dimensional Schrodinger equation Proposed model is extended for short channel devices by including semi-empirical correction The impact of effective mass variation with film thicknesses is also discussed using the proposed model All models are fully validated against the professional numerical device simulator for a wide range of device geometries (C) 2010 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the recent years. India has emerged as one of the fast growing economies of the world necessitating equally rapid increase in modern energy consumption. With an imminent global climate change threat, India will have difficulties in continuing with this rising energy use levels towards achieving high economic growth. It will have to follow an energy-efficient pathway in attaining this goal. In this context, an attempt is made to present India's achievements on the energy efficiency front by tracing the evolution of policies and their impacts. The results indicate that India has made substantial progress in improving energy efficiency which is evident from the reductions achieved in energy intensities of GDP to the tune of 88% during 1980-2007. Similar reductions have been observed both with respect to overall Indian economy and the major sectors of the economy. In terms of energy intensity of GDP, India occupies a relatively high position of nine among the top 30 energy consuming countries of the world. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of Wigner distribution functions, and the Weyl correspondence between quantum and classical variables, are extended from the usual kind of canonically conjugate position and momentum operators to the case of an angle and angular momentum operator pair. The sense in which one has a description of quantum mechanics using classical phase‐space language is much clarified by this extension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using ab initio methods we have investigated the fluorination of graphene and find that different stoichiometric phases can be formed without a nucleation barrier, with the complete “2D-Teflon” CF phase being thermodynamically most stable. The fluorinated graphene is an insulator and turns out to be a perfect matrix-host for patterning nanoroads and quantum dots of pristine graphene. The electronic and magnetic properties of the nanoroads can be tuned by varying the edge orientation and width. The energy gaps between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO) of quantum dots are size-dependent and show a confinement typical of Dirac fermions. Furthermore, we study the effect of different basic coverage of F on graphene (with stoichiometries CF and C4F) on the band gaps, and show the suitability of these materials to host quantum dots of graphene with unique electronic properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model for coalescence efficiency of two drops embedded in an eddy has been developed. Unlike the other models which consider only head-on collisions, the model considers the droplets to approach at an arbitrary angle. The drop pair is permitted to undergo rotation while they approach each other. For coalescence to occur, the drops are assumed to approach each other under a squeezing force acting over the life time of eddy but which can vary with time depending upon the angle of approach. The model accounts for the deformation of tip regions of the approaching drops and, describes the rupture of the intervening film, based on stability considerations while film drainage is continuing under the combined influence of the hydrodynamic and van der Waals forces. The coalescence efficiency is defined as the ratio of the range of angles resulting in coalescence to the total range of all possible approach angles. The model not only reconciles the contradictory predictions made by the earlier models based on similar framework but also brings out the important role of dispersed-phase viscosity. It further predicts that the dispersions involving pure phases can be stabilized at high rps values. Apart from explaining the hitherto unexplained experimental data of Konno et al. qualitatively, the model also offers an alternate explanation for the interesting observations of Shinnar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PbS quantum dots synthesized in PVA are used to investigate their photoluminescence (PL) response to various ions such as Zn, Cd, Hg, Ag, Cu, Fe, Mn, Co, Cr and Ni ions. The enhancement in the photoluminescence intensity is observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations is quite high, approximately an order of magnitude higher than Zn and Cd. It is interesting to observe that the change in Pb and S molar ratio has profound effect on the selectivity of these ions. The samples prepared under excess of S are quite effective compared to Pb. Indeed, the later one has hardly any effect on the photoluminescence response. These results also indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu, Fe and Co quenches the photoluminescence. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa), which is an interesting feature for metal ion detectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the most intriguing quantum effects are observed or could be measured in transport experiments through nanoscopic systems such as quantum dots, wires and rings formed by large molecules or arrays of quantum dots. In particular, the separation of charge and spin degrees of freedom and interference effects have important consequences in the conductivity through these systems. Charge-spin separation was predicted theoretically in one-dimensional strongly inter-acting systems (Luttinger liquids) and, although observed indirectly in several materials formed by chains of correlated electrons, it still lacks direct observation. We present results on transport properties through Aharonov-Bohmrings (pierced by a magnetic flux) with one or more channels represented by paradigmatic strongly-correlated models. For a wide range of parameters we observe characteristic dips in the conductance as a function of magnetic flux which are a signature of spin and charge separation. Interference effects could also be controlled in certain molecules and interesting properties could be observed. We analyze transport properties of conjugated molecules, benzene in particular, and find that the conductance depends on the lead configuration. In molecules with translational symmetry, the conductance can be controlled by breaking or restoring this symmetry, e.g. by the application of a local external potential. These results open the possibility of observing these peculiar physical properties in anisotropic ladder systems and in real nanoscopic and molecular devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a one-dimensional version of the Kitaev model consisting of spins on a two-legged ladder and characterized by Z(2) invariants on the plaquettes of the ladder. We map the model to a fermionic system and identify the topological sectors associated with different Z2 patterns in terms of fermion occupation numbers. Within these different sectors, we investigate the effect of a linear quench across a quantum critical point. We study the dominant behavior of the system by employing a Landau-Zener-type analysis of the effective Hamiltonian in the low-energy subspace for which the effective quenching can sometimes be non-linear. We show that the quenching leads to a residual energy which scales as a power of the quenching rate, and that the power depends on the topological sectors and their symmetry properties in a non-trivial way. This behavior is consistent with the general theory of quantum quenching, but with the correlation length exponent nu being different in different sectors. Copyright (C) EPLA, 2010