279 resultados para Power sensitivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot deformation behavior of α brass with varying zinc contents in the range 3%–30% was characterized using hot compression testing in the temperature range 600–900 °C and strain rate range 0.001–100 s−1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by Image where m is the strain rate sensitivity) with temperature and strain rate were obtained. α brass exhibits a domain of dynamic recrystallization (DRX) at temperatures greater than 0.85Tm and at strain rates lower than 1 s−1. The maximum efficiency of power dissipation increases with increasing zinc content and is in the range 33%–53%. The DRX domain shifts to lower strain rates for higher zinc contents and the strain rate for peak efficiency is in the range 0.0001–0.05 s−1. The results indicate that the DRX in α brass is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the influence of different levels of complexity in modelling various constituent subsystems on the dynamic stability of power systems compensated by static var systems (SVS) operating on pure voltage control. The system components investigated include thyristor controlled reactor (TCR) transients, SVS delays, network transients, the synchronous generator and automatic voltage regulator (AVR). An overall model is proposed which adequately describes the system performance for small signal perturbations. The SVS performance is validated through detailed nonlinear simulation on a physical simulator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Torsional interactions can occur due to the speed input Power System Stabilizer (PSS) that are primarily used to damp low frequency oscillations. The solution to this problem can be either in the form of providing a torsional filter or developing an alternate signal for the PSS. This paper deals with the formulation of a linearized state space model of the system and study of the interactions using eigenvalue analysis. The effects of the parameters of PSS and control signals on the damping of torsional modes are investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aims at understanding the need for decentralized power generation systems and to explore the potential, feasibility and environmental implications of biomass gasifier-based electricity generation systems for village electrification. Electricity needs of villages are in the range of 5–20 kW depending on the size of the village. Decentralized power generation systems are desirable for low load village situations as the cost of power transmission lines is reduced and transmission and distribution losses are minimised. A biomass gasifier-based electricity generation system is one of the feasible options; the technology is readily available and has already been field tested. To meet the lighting and stationary power needs of 500,000 villages in India the land required is only 16 Mha compared to over 100 Mha of degraded land available for tree planting. In fact all the 95 Mt of woody biomass required for gasification could be obtained through biomass conservation programmes such as biogas and improved cook stoves. Thus dedication of land for energy plantations may not be required. A shift to a biomass gasifier-based power generation system leads to local benefits such as village self reliance, local employment and skill generation and promotion of in situ plant diversity plus global benefits like no net CO2 emission (as sustainable biomass harvests are possible) and a reduction in CO2 emissions (when used to substitute thermal power and diesel in irrigation pump sets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive flow behaviour of OFHC copper under working conditions is studied using hot compression in the temperature range 650 to 900-degrees-C and strain rate range 0.001 to 100 s-1. The variation of the efficiency of power dissipation given by [2m/(m + 1)] (where m is the strain rate sensitivity) with temperature and strain rate is represented in the form of a power dissipation map and interpreted on the basis of the Dynamic Materials Model. The map prominently exhibited a domain centered at 850-degrees-C and 100 s-1 with a peak efficiency of 35 %. On the basis of the correlation of variations of grain size, efficiency of power dissipation and hot workability with temperature, the domain is identified to represent dynamic recrystallization (DRX).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of zirconium on the hot working characteristics of alpha and alpha-beta brass was studied in the temperature range of 500 to 850-degrees-C and the strain rate range of 0.001 to 100 s-1. On the basis of the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)] where m is the strain rate sensitivity) with temperature and strain rate were obtained. The addition of zirconium to alpha brass decreased the maximum efficiency of power dissipation from 53 to 39%, increased the strain rate for dynamic recrystallization (DRX) from 0.001 to 0.1 s-1 and improved the hot workability. Alpha-beta brasses with and without zirconium exhibit a domain in the temperature range from 550 to 750-degrees-C and at strain rates lower than 1 s-1 with a maximum efficiency of power dissipation of nearly 50 % occurring in the temperature range of 700 to 750-degrees-C and a strain rate of 0.001 s-1. In the domain, the alpha phase undergoes DRX and controls the hot deformation of the alloy whereas the beta phase deforms superplastically. The addition of zirconium to alpha-beta brass has not affected the processing maps as it gets partitioned to the beta phase and does not alter the constitutive behavior of the alpha phase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processing maps for hot working of stainless steel of type AISI 304L have been developed on the basis of the flow stress data generated by compression and torsion in the temperature range 600–1200 °C and strain rate range 0.1–100 s−1. The efficiency of power dissipation given by 2m/(m+1) where m is the strain rate sensitivity is plotted as a function of temperature and strain rate to obtain a processing map, which is interpreted on the basis of the Dynamic Materials Model. The maps obtained by compression as well as torsion exhibited a domain of dynamic recrystallization with its peak efficiency occurring at 1200 °C and 0.1 s−1. These are the optimum hot-working parameters which may be obtained by either of the test techniques. The peak efficiency for the dynamic recrystallization is apparently higher (64%) than that obtained in constant-true-strain-rate compression (41%) and the difference in explained on the basis of strain rate variations occurring across the section of solid torsion bar. A region of flow instability has occurred at lower temperatures (below 1000 °C) and higher strain rates (above 1 s−1) and is wider in torsion than in compression. To achieve complete microstructure control in a component, the state of stress will have to be considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a physical explanation of the phenomenon of low frequency oscillations experienced in power systems. A brief account of the present practice of providing fixed gain power system stabilizers (PSS) is followed by a summary of some of the recent design proposals for adaptive PSS. A novel PSS based on the effort of cancelling the negative damping torque produced by the automatic voltage regulator (AVR) is presented along with some recent studies on a multimachine system using a frequency identification technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behaviour of agr — nickel silver in the temperature range 700–950 °C and strain rate range 0.001–100 s–1 was characterized with the help of a processing map generated on the basis of the principles of the ldquodynamic materials modelrdquo of Prasadet al Using the flow stress data, processing maps showing the variation of the efficiency of power dissipation (given by 2m/(m+1) wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-nickel silver exhibits a single domain at temperatures greater than 750 °C and at strain rates lower than 1s–1, with a maximum efficiency of 38% occurring at about 950 °C and at a strain rate of 0.1 s–1. In the domain the material undergoes dynamic recrystallization (DRX). On the basis of a model, it is shown that the DRX is controlled by the rate of interface formation (nucleation) which depends on the diffusion-controlled process of thermal recovery by climb. At high strain rates (10 and 100s–1) the material undergoes microstructural instabilities, the manifestations of which are in the form of adiabatic shear bands and strain markings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The constitutive behaviour of agr-beta nickel silver in the temperature range 600�850 °C and strainrate range 0.001�100s�1 was characterized with the help of a processing map generated on the principles of the dynamic materials model. On the basis of the flow-stress data, processing maps showing the variation of the efficiency of power dissipation (given by [2m/(m+1)], wherem is the strain-rate sensitivity) with temperature and strain rate were obtained, agr-beta nickel silver exhibits a single domain at temperatures greater than 700 °C and at strain rates lower than 1 s�1 with a maximum efficiency of power dissipation of about 42% occurring at about 850 °C and at 0.1 s�1. In the domain, the agr phase undergoes dynamic recrystallization and controls the deformation of the alloy, while the beta phase deforms superplastically. Optimum conditions for the processing of agr-beta nickel silver are 850 °C and 0.1 s�1. The material undergoes unstable flow at strain rates of 10 and 100 s�1 and in the temperature range 600�750 °C, manifestated in the form of adiabatic shear bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by eegr = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s�1. At temperatures below 350°C and in the strain rate range 0.001�0.01 s�1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s�1 and an extrusion ratio of 10ratio1. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s�1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s�1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s�1 and a lower temperature of 425°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the analysis and study of voltage collapse at any converter bus in an AC system interconnected by multiterminal DC (MTDC) links. The analysis is based on the use of the voltage sensitivity factor (VSF) as a voltage collapse proximity indicator (VCPI). In this paper the VSF is defined as a matrix which is applicable to MTDC systems. The VSF matrix is derived from the basic steady state equations of the converter, control, DC and AC networks. The structure of the matrix enables the derivation of some of the basic properties which are generally applicable. A detailed case study of a four-terminal MTDC system is presented to illustrate the effects of control strategies at the voltage setting terminal (VST) and other terminals. The controls considered are either constant angle, DC voltage, AC voltage, reactive current and reactive power at the VST and constant power or current at the other terminals. The effect of the strength of the AC system (measured by short circuit ratio) on the VSF is investigated. Several interesting and new results are presented. An analytical expression for the self VSF at VST is also derived for some specific cases which help to explain the number of transitions in VSF around the critical values of SCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High power converters are used in variable speed induction motor drive applications. Riding through a short term power supply glitch is becoming an important requirement in these power converters. The power converter uses a large number of control circuit boards for its operation. The control power supply need to ensure that any glitch in the grid side does not affect any of these control circuit boards. A power supply failure of these control cards results in shut down of the entire system. The paper discusses the ride through system developed to overcome voltage sags and short duration outages at the power supply terminals of the control cards in these converters. A 240VA non-isolated, bi-directional buck-boost converter has been designed to be used along with a stack of ultracapacitors to achieve the same. A micro-controller based digital control platform made use of to achieve the control objective. The design of the ultracapacitor stack and the bidirectional converter is described the performance of the experimental set-up is evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustered VLIW architectures solve the scalability problem associated with flat VLIW architectures by partitioning the register file and connecting only a subset of the functional units to a register file. However, inter-cluster communication in clustered architectures leads to increased leakage in functional components and a high number of register accesses. In this paper, we propose compiler scheduling algorithms targeting two previously ignored power-hungry components in clustered VLIW architectures, viz., instruction decoder and register file. We consider a split decoder design and propose a new energy-aware instruction scheduling algorithm that provides 14.5% and 17.3% benefit in the decoder power consumption on an average over a purely hardware based scheme in the context of 2-clustered and 4-clustered VLIW machines. In the case of register files, we propose two new scheduling algorithms that exploit limited register snooping capability to reduce extra register file accesses. The proposed algorithms reduce register file power consumption on an average by 6.85% and 11.90% (10.39% and 17.78%), respectively, along with performance improvement of 4.81% and 5.34% (9.39% and 11.16%) over a traditional greedy algorithm for 2-clustered (4-clustered) VLIW machine. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large external memory bandwidth requirement leads to increased system power dissipation and cost in video coding application. Majority of the external memory traffic in video encoder is due to reference data accesses. We describe a lossy reference frame compression technique that can be used in video coding with minimal impact on quality while significantly reducing power and bandwidth requirement. The low cost transformless compression technique uses lossy reference for motion estimation to reduce memory traffic, and lossless reference for motion compensation (MC) to avoid drift. Thus, it is compatible with all existing video standards. We calculate the quantization error bound and show that by storing quantization error separately, bandwidth overhead due to MC can be reduced significantly. The technique meets key requirements specific to the video encode application. 24-39% reduction in peak bandwidth and 23-31% reduction in total average power consumption are observed for IBBP sequences.