149 resultados para Popish Plot, 1678.
Resumo:
Accelerated electrothermal aging tests were conducted at a constant temperature of 60 degrees C and at different stress levels of 6 kV/mm, 7 kV/mm and 8 kV/mm on unfilled epoxy and epoxy filled with 5 wt% of nano alumina. The leakage current through the samples were continuously monitored and the variation in tan delta values with aging duration was monitored to predict the impending failure and the time to failure of the samples. It is observed that the time to failure of epoxy alumina nanocomposite samples is significantly higher as compared to the unfilled epoxy. Data from the experiments has been analyzed graphically by plotting the Weibull probability and theoretically by the linear least square regression analysis. The characteristic life obtained from the least square regression analysis has been used to plot the inverse power law curve. From the inverse power law curve, the life of the epoxy insulation with and without nanofiller loading at a stress level of 3 kV/mm, i.e. within the midrange of the design stress level of rotating machine insulation, has been obtained by extrapolation. It is observed that the life of epoxy alumina nanocomposite of 5 wt% filler loading is nine times higher than that of the unfilled epoxy.
Resumo:
Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (T-g). Generally, application of high pressure increases the T-g and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As2Te3 glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at T-g. The T-g estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 degrees C/kbar for a linear fit and -2.99 degrees C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As2Se3, and As30Se30Te40 show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As2Te3 glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Delta k/Delta alpha will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between T-g and the optical band gap (E-g for covalent semiconducting glasses when they are grouped according to their average coordination number. The electrical band gap (Delta E) of As2Te3 glass decreases with pressure. The optical and electrical band gaps are related as Delta E-g = 2 Delta E; thus, a negative dT(g)/dP is expected when As2Te3 glass is subjected to high pressures. In this sense, As2Te3 is a unique glass where its variation of T-g with pressure can be understood by both electronic and thermodynamic models.
Resumo:
Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.
Resumo:
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.
Resumo:
Solder joints in electronic packages undergo thermo-mechanical cycling, resulting in nucleation of micro-cracks, especially at the solder/bond-pad interface, which may lead to fracture of the joints. The fracture toughness of a solder joint depends on material properties, process conditions and service history, as well as strain rate and mode-mixity. This paper reports on a methodology for determining the mixed-mode fracture toughness of solder joints with an interfacial starter-crack, using a modified compact mixed mode (CMM) specimen containing an adhesive joint. Expressions for stress intensity factor (K) and strain energy release rate (G) are developed, using a combination of experiments and finite element (FE) analysis. In this methodology, crack length dependent geometry factors to convert for the modified CMM sample are first obtained via the crack-tip opening displacement (CTOD)-based linear extrapolation method to calculate the under far-field mode I and II conditions (f(1a) and f(2a)), (ii) generation of a master-plot to determine a(c), and (iii) computation of K and G to analyze the fracture behavior of joints. The developed methodology was verified using J-integral calculations, and was also used to calculate experimental fracture toughness values of a few lead-free solder-Cu joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Two isomorphous submicron sized metal-organic network compounds, Y-2(PDA)(3)(H2O)1]center dot 2H(2)O (PDA = 1,4-phenylenediacetate), 1 and Y1.8Tb0.2(PDA)(3)(H2O)1]center dot 2H(2)O, Tb@1 have been synthesized by employing solvent assisted liquid grinding followed by heating at 180 degrees C for 1' min and washing with water. Single crystal X-ray data of bulk 1 confirmed a three dimensional porous structure. The structure and morphology of 1 and Tb@1 were systematically characterized by PXRD, TGA, DSC, IR, SEM and EDX analysis. Dehydrated Tb@1 Tb@1'] shows a high intense visible green emission upon exposure to UV light. The green emission of Tb@1' was used for the detection of nitro explosives, such as 2,4,6-trinitrophenol (TNP), 1,3-dinitro benzene (DNB), 2,4-dinitro toluene (DNT), nitro benzene (NB), and 4-nitro toluene (NT) in acetonitrile. The results show that the emission intensity of dehydrated Tb@1' can be quenched by all the nitro analytes used in the present work. Remarkably, Tb@1' exhibited a high efficiency for TNP, DNB and DNT detection with K-SV K-SV = quenching constant based on linear Stern-Volmer plot] values of 70 920, 44 000 and 35 430 M-1, respectively, which are the highest values amongst known metal-organic materials. Using this material submicromolar level (equivalent to 0.18 ppm), a detection of nitro explosives has been achieved.
Resumo:
Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve >0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.
Resumo:
GaN nanorods were grown by plasma assisted molecular beam epitaxy on intrinsic Si (111) substrates which were characterized by powder X-ray diffraction, field emission scanning electron microscopy, and photoluminescence. The current-voltage characteristics of the GaN nanorods on Si (111) heterojunction were obtained from 138 to 493K which showed the inverted rectification behavior. The I-V characteristics were analyzed in terms of thermionic emission model. The temperature variation of the apparent barrier height and ideality factor along with the non-linearity of the activation energy plot indicated the presence of lateral inhomogeneities in the barrier height. The observed two temperature regimes in Richardson's plot could be well explained by assuming two separate Gaussian distribution of the barrier heights. (C) 2014 AIP Publishing LLC.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R (3) over barm) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn3+ and low spin configuration for Ru4+ where the itinerant electrons occupy a pi*-band. The onset of a net maximum in the chi vs. T plot at 9.5 K and the negative value of the Weiss constant (theta) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn3+ and Ru4+ are partially oxidized to Mn4+ and Ru5+ in the sloping region at low voltage, while in the long plateau, O2- is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O2- ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O2- (plateau) while Fe seems to retain its 3+ state.
Resumo:
In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In our earlier communication we proposed a simple fragility determining function, (NBO]/(VmTg)-T-3), which we have now used to analyze several glass systems using available thermal data. A comparison with similar fragility determining function, Delta C-p/C-p(1), introduced by Chryssikos et al. in their investigation of lithium borate glasses has also been performed and found to be more convenient quantity for discussing fragilities. We now propose a new function which uses both Delta C-p and Delta T and which gives a numerical fragility parameter, F whose value lies between 0 and 1 for glass forming liquids. F can be calculated through the use of measured thermal parameters Delta C-p, C-p(1), T-g and T-m. Use of the new fragility values in reduced viscosity equation reproduces the whole range of viscosity curves of the Angell plot. The reduced viscosity equation can be directly compared with the Adam-Gibbs viscosity equation and a heat capacity function can be formulated which reproduces satisfactorily the Delta C-p versus In(T-r) curves and hence the configurational entropy. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The grain size of monolayer large area graphene is key to its performance. Microstructural design for the desired grain size requires a fundamental understanding of graphene nucleation and growth. The two levers that can be used to control these aspects are the defect density, whose population can be controlled by annealing, and the gas-phase supersaturation for activation of nucleation at the defect sites. We observe that defects on copper surface, namely dislocations, grain boundaries, triple points, and rolling marks, initiate nucleation of graphene. We show that among these defects dislocations are the most potent nucleation sites, as they get activated at lowest supersaturation. As an illustration, we tailor the defect density and supersaturation to change the domain size of graphene from <1 mu m(2) to >100 mu m(2). Growth data reported in the literature has been summarized on a supersaturation plot, and a regime for defect-dominated growth has been identified. In this growth regime, we demonstrate the spatial control over nucleation at intentionally introduced defects, paving the way for patterned growth of graphene. Our results provide a unified framework for understanding the role of defects in graphene nucleation and can be used as a guideline for controlled growth of graphene.
Resumo:
The photo-induced effects of Ge12Sb25S63 films illuminated with 532 nm laser light are investigated from transmission spectra measured by FTIR spectroscopy. The material exhibits photo-bleaching (PB) when exposed to band gap light for a prolonged time in a vacuum. The PB is ascribed to structural changes inside the film as well as surface photooxidation. The amorphous nature of thin films was detected by x-ray diffraction. The chemical composition of the deposited thin films was examined by energy dispersive x-ray analysis (EDAX). The refractive indices of the films were obtained from the transmission spectra based on an inverse synthesis method and the optical band gaps were derived from optical absorption spectra using the Tauc plot. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model. It was found that the mechanism of the optical absorption follows the rule of the allowed non-direct transition. Raman and x-ray photoelectron spectra (XPS) were measured and decomposed into several peaks that correspond to the different structural units which support the optical changes.