168 resultados para Parallel Evolutionary Algorithms
Resumo:
IEEE 802.16 standards for Wireless Metropolitan Area Networks (WMANs) include a mesh mode of operation for improving the coverage and throughput of the network. In this paper, we consider the problem of routing and centralized scheduling for such networks. We first fix the routing, which reduces the network to a tree. We then present a finite horizon dynamic programming framework. Using it we obtain various scheduling algorithms depending upon the cost function. Next we consider simpler suboptimal algorithms and compare their performances.
Resumo:
Adsorption of n-alkane mixtures in the zeolite LTA-5A under liquid-phase conditions has been studied using grand canonical Monte Carlo (GCMC) simulations combined with parallel tempering. Normal GCMC techniques fail for some of these systems due to the preference of linear molecules to coil within a single cage in the zeolite. The narrow zeolite windows severerly restrict interactions of the molecules, making it difficult to simulate cooperative rearrangements necessary to explore configuration space. Because of these reasons, normal GCMC simulations results show poor reproducibility in some cases. These problems were overcome with parallel tempering techniques. Even with parallel tempering, these are very challenging systems for molecular simulation. Similar problems may arise for other zeolites such as CHA, AFX, ERI, KFI, and RHO having cages connected by narrow windows. The simulations capture the complex selectivity behavior observed in experiments such as selectivity inversion and azeotrope formation.
Resumo:
We consider the problem of computing an approximate minimum cycle basis of an undirected non-negative edge-weighted graph G with m edges and n vertices; the extension to directed graphs is also discussed. In this problem, a {0,1} incidence vector is associated with each cycle and the vector space over F-2 generated by these vectors is the cycle space of G. A set of cycles is called a cycle basis of G if it forms a basis for its cycle space. A cycle basis where the sum of the weights of the cycles is minimum is called a minimum cycle basis of G. Cycle bases of low weight are useful in a number of contexts, e.g. the analysis of electrical networks, structural engineering, chemistry, and surface reconstruction. Although in most such applications any cycle basis can be used, a low weight cycle basis often translates to better performance and/or numerical stability. Despite the fact that the problem can be solved exactly in polynomial time, we design approximation algorithms since the performance of the exact algorithms may be too expensive for some practical applications. We present two new algorithms to compute an approximate minimum cycle basis. For any integer k >= 1, we give (2k - 1)-approximation algorithms with expected running time O(kmn(1+2/k) + mn((1+1/k)(omega-1))) and deterministic running time O(n(3+2/k) ), respectively. Here omega is the best exponent of matrix multiplication. It is presently known that omega < 2.376. Both algorithms are o(m(omega)) for dense graphs. This is the first time that any algorithm which computes sparse cycle bases with a guarantee drops below the Theta(m(omega) ) bound. We also present a 2-approximation algorithm with expected running time O(M-omega root n log n), a linear time 2-approximation algorithm for planar graphs and an O(n(3)) time 2.42-approximation algorithm for the complete Euclidean graph in the plane.
Resumo:
Reduction of the execution time of a job through equitable distribution of work load among the processors in a distributed system is the goal of load balancing. Performance of static and dynamic load balancing algorithms for the extended hypercube, is discussed. Threshold algorithms are very well-known algorithms for dynamic load balancing in distributed systems. An extension of the threshold algorithm, called the multilevel threshold algorithm, has been proposed. The hierarchical interconnection network of the extended hypercube is suitable for implementing the proposed algorithm. The new algorithm has been implemented on a transputer-based system and the performance of the algorithm for an extended hypercube is compared with those for mesh and binary hypercube networks
Resumo:
This paper considers a multi-person discrete game with random payoffs. The distribution of the random payoff is unknown to the players and further none of the players know the strategies or the actual moves of other players. A class of absolutely expedient learning algorithms for the game based on a decentralised team of Learning Automata is presented. These algorithms correspond, in some sense, to rational behaviour on the part of the players. All stable stationary points of the algorithm are shown to be Nash equilibria for the game. It is also shown that under some additional constraints on the game, the team will always converge to a Nash equilibrium.
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
This paper considers the problem of spectrum sensing in cognitive radio networks when the primary user employs Orthogonal Frequency Division Multiplexing (OFDM). We specifically consider the scenario when the channel between the primary and a secondary user is frequency selective. We develop cooperative sequential detection algorithms based on energy detectors. We modify the detectors to mitigate the effects of some common model uncertainties such as timing and frequency offset, IQ-imbalance and uncertainty in noise and transmit power. The performance of the proposed algorithms are studied via simulations. We show that the performance of the energy detector is not affected by the frequency selective channel. We also provide a theoretical analysis for some of our algorithms.
Resumo:
Genetic algorithms provide an alternative to traditional optimization techniques by using directed random searches to locate optimal solutions in complex landscapes. We introduce the art and science of genetic algorithms and survey current issues in GA theory and practice. We do not present a detailed study, instead, we offer a quick guide into the labyrinth of GA research. First, we draw the analogy between genetic algorithms and the search processes in nature. Then we describe the genetic algorithm that Holland introduced in 1975 and the workings of GAs. After a survey of techniques proposed as improvements to Holland's GA and of some radically different approaches, we survey the advances in GA theory related to modeling, dynamics, and deception
Resumo:
For a class of distributed recursive algorithms, it is shown that a stochastic approximation-like tapering stepsize routine suppresses the effects of interprocessor delays.
Resumo:
The complete amino-acid sequence of sheep liver cytosolic serine hydroxymethyltransferase was determined from an analysis of tryptic, chymotryptic, CNBr and hydroxylamine peptides. Each subunit of sheep liver serine hydroxymethyltransferase consisted of 483 amino-acid residues. A comparison of this sequence with 8 other serine hydroxymethyltransferases revealed that a possible gene duplication event could have occurred after the divergence of animals and fungi. This analysis also showed independent duplication of SHMT genes in Neurospora crassa. At the secondary structural level, all the serine hydroxymethyltransferases belong to the alpha/beta category of proteins. The predicted secondary structure of sheep liver serine hydroxymethyltransferase was similar to that of the observed structure of tryptophan synthase, another pyridoxal 5'-phosphate containing enzyme, suggesting that sheep liver serine hydroxymethyltransferase might have a similar pyridoxal 5'-phosphate binding domain. In addition, a conserved glycine rich region, G L Q G G P, was identified in all the serine hydroxymethyltransferases and could be important in pyridoxal 5'-phosphate binding. A comparison of the cytosolic serine hydroxymethyltransferases from rabbit and sheep liver with other proteins sequenced from both these sources showed that serine hydroxymethyltransferase was a highly conserved protein. It was slightly less conserved than cytochrome c but better conserved than myoglobin, both of which are well known evolutionary markers. C67 and C203 were specifically protected by pyridoxal 5'-phosphate against modification with [C-14]iodoacetic acid, while C247 and C261 were buried in the native serine hydroxymethyltransferase. However, the cysteines are not conserved among the various serine hydroxymethyltransferases. The exact role of the cysteines in the reaction catalyzed by serine hydroxymethyltransferase remains to be elucidated.
Resumo:
This paper presents a dan-based evolutionary approach for solving control problems. Three selected control problems, viz. linear-quadratic, harvest, and push-cart problems, are solved using the proposed approach. Results are compared with those of the evolutionary programming (EP) approach. In most of the cases, the proposed approach is successful in obtaining (near) optimal solutions for these selected problems.
Resumo:
Two new line clipping algorithms, the opposite-corner algorithm and the perpendicular-distance algorithm, that are based on simple geometric observations are presented. These algorithms do not require computation of outcodes nor do they depend on the parametric representations of the lines. It is shown that the opposite-corner algorithm perform consistently better than an algorithm due to Nicholl, Lee, and Nicholl which is claimed to be better than the classic algorithm due to Cohen-Sutherland and the more recent Liang-Barsky algorithm. The pseudo-code of the opposite-corner algorithm is provided in the Appendix.
Resumo:
Code Division Multiple Access (CDMA) techniques, by far, had been applied to LAN problems by many investigators, An analytical study of well known algorithms for generation of Orthogonal codes used in FO-CDMA systems like those for prime, quasi-Prime, Optical Orthogonal and Matrix codes has been presented, Algorithms for OOCs like Greedy/Modified Greedy/Accelerated Greedy algorithms are implemented. Many speed-up enhancements. for these algorithms are suggested. A novel Synthetic Algorithm based on Difference Sets (SADS) is also proposed. Investigations are made to vectorise/parallelise SADS to implement the source code on parallel machines. A new matrix for code families of OOCs with different seed code-words but having the same (n,w,lambda) set is formulated.