439 resultados para PRESSURE-VISCOSITY COEFFICIENT
Resumo:
The environmcnl exerts an important inJuence on the pefirmance of space systems. A brief rel'iew of mo.s/ of the studies, pre.~ented over the past eightem years, relating to the influence ar7d the possible utilization of thc solar radiation pressure &d aero&namic forces, with particular reference to attitude dynamics and control qf satellites is presented here. The semi-passive stabilizers employing rhese forces show p~qmise of long life, low power and economic sjsfems, which though slower in response, compare we1I wit11 the octiw coi~trollers. It is felt that mud more attention is necessary to the actual implema~tution of these ideas and devices: some of which me quite ingenious und unique.
Resumo:
For the experimental evaluation of the acoustical impedance of a termination by the impedance-tube method at low frequencies, the length of the impedance tube is a problem. In the present paper, the method of exact analysis of standing waves developed by the authors for the stationary medium as well as for mean flow, has been extended for measurement of the acoustical impedance of a termination at low frequencies. The values of the tube attenuation factor and the wave number at the low frequency of interest are established from the experiment conducted, with the given impedance tube, at a higher frequency. Then, exciting the tube at the desired low frequency it is sufficient to measure sound pressure at three differenct locations (not necessarily the minima) in order to evaluate reflection coefficient and hence the impedance of the termination at that frequency.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.
Resumo:
Numerical and experimental studies on transport phenomena during solidification of an aluminum alloy in the presence of linear electromagnetic stirring are performed. The alloy is electromagnetically stirred to produce semisolid slurry in a cylindrical graphite mould placed in the annulus of a linear electromagnetic stirrer. The mould is cooled at the bottom, such that solidification progresses from the bottom to the top of the cylindrical mould. A numerical model is developed for simulating the transport phenomena associated with the solidification process using a set of single-phase governing equations of mass. momentum, energy. and species conservation. The viscosity variation of the slurry, used in the model, is determined experimentally using a rotary viscometer. The set of governing equations is solved using a pressure-based finite volume technique, along with an enthalpy based phase change algorithm. The numerical study involves prediction of temperature, velocity, species and solid fraction distribution in the mould. Corresponding solidification experiments are performed, with time-temperature history recorded at key locations. The microstructures at various temperature measurement locations in the solidified billet are analyzed. The numerical predictions of temperature variations are in good agreement with experiments, and the predicted flow field evolution correlates well with the microstructures observed at various locations.
Resumo:
A compact clamp-type high pressure cell for carrying out electrical conductivity measurements on small solid samples of size 1 mm or less at pressures upto 8 GPa (i.e., 80 kbar) and for use down to 77 K has been designed and fabricated. The pressure generated in the sample region has been calibrated at room temperature against the polymorphic phase transitions of Bismuth and Ytterbium. The pressure relaxation of the clamp at low temperatures has been estimated by monitoring the electrical conductivity behavior of lead. Review of Scientific Instruments is copyrighted by The American Institute of Physics.
Resumo:
Zinc micro and nanostructures were synthesized in vacuum by condensing evaporated zinc on Si substrate at different gas pressures. The morphology of the grown Zn structures was found to be dependent on the oxygen partial pressure. Depending on oxygen partial pressure it varied from two-dimensional microdisks to one-dimensional nanowire. The morphology and structural properties of the grown micro and nanostructures were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Transmission electron microscopy (TEM) studies on the grown Zn nanowires have shown that they exhibit core/shell-like structures, where a thin ZnO layer forms the shell. A possible growth mechanism behind the formation of different micro and nanostructures has been proposed. In addition, we have synthesized ZnO nanocanal-like structures by annealing Zn nanowires in vacuum at 350 °C for 30 min.
Resumo:
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.
Resumo:
Using the concept of energy-dependent effective field intensity, electron transport coefficients in nitrogen have been determined in E times B fields (E = electric field intensity, B = magnetic flux density) by the numerical solution of the Boltzmann transport equation for the energy distribution of electrons. It has been observed that as the value of B/p (p = gas pressure) is increased from zero, the perpendicular drift velocity increased linearly at first, reaches a maximum value, and then decreases with increasing B/p. In general, the electron mean energy is found to be a function of Eavet/p( Eavet = averaged effective electric field intensity) only, but the other transport coefficients, such as transverse drift velocity, perpendicular drift velocity, and the Townsend ionization coefficient, are functions of both E/p and B/p.
Resumo:
In this paper, we consider a more realistic model of a spherical blast wave of moderate strength. An arbitrary number of terms for the series solution in each of the regions behind the main shock - the expansion region, the nearly uniform region outside the main expansion and the region between the contact surface and the main shock, have been generated and matched across the boundaries. We then study the convergence of the solution by using Pade approximation. It constitutes a genuine analytic solution for a moderately strong explosion, which, however, does not involve a secondary shock. The pressure distribution behind the shock however shows some significant changes in the location of the tail of the rarefaction and the interface, in comparison to the planar problem. The theory developed for the spherical blasts is also extended to cylindrical blasts. The results are compared with the numerical solution.
Resumo:
The conventional Clauser-chart method for determination of local skin friction in zero or weak pressure-gradient turbulent boundary layer flows fails entirely in strong pressure-gradient situations. This failure occurs due to the large departure of the mean velocity profile from the universal logarithmic law upon which the conventional Clauser-chart method is based. It is possible to extend this method,even for strong pressure-gradient situations involving equilibrium or near-equilibrium turbulent boundary layers by making use of the so-called non-universal logarithmic laws. These non-universal log laws depend on the local strength of the pressure gradient and may be regarded as perturbations of the universal log law.The present paper shows that the modified Clauser-chart method, so developed, yields quit satisfactory results in terms of estimation of local skin friction in strongly accelerated or retarded equilibrium and near-equilibrium turbulent boundary layers that are not very close to relaminarization or separation.
Resumo:
Obtaining drinking water from seawater is usually done through the process of desalination. The conventional desalination processes at present are centralized, require huge capital cost, and enormous amount of concentrated energy from fossil fuel. Issues like optimal chamber pressure, pressure control and energy savings for desalination are not adequately addressed. This paper proposes a novel pressure control method by means of dynamic pressure modulation within the evaporation chamber. A performance index is proposed that results in a dynamic optimal external pressure and maximum energy saving for a specific flow rate. Experimental results from the laboratory setup that validate the proposed concepts are presented in the paper. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Thin accretion discs around massive compact objects can support slow pressure modes of oscillations in the linear regime that have azimuthal wavenumber m = 1. We consider finite, flat discs composed of barotropic fluid for various surface density profiles and demonstrate through WKB analysis and numerical solution of the eigenvalue problem - that these modes are stable and have spatial scales comparable to the size of the disc. We show that the eigenvalue equation can be mapped to a Schrodinger like equation. The analysis of this equation shows that all eigenmodes have discrete spectra. We find that all the models we have considered support negative frequency eigenmodes; however, the positive eigenfrequency modes are only present in power-law discs, albeit for physically uninteresting values of the power-law index beta and barotropic index gamma.
Resumo:
The copolymers, poly(methyl methacrylate-co-methyl acrylate) (PMMAMA), poly(methyl methacrylate-co-ethyl acrylate) (PMMAEA) and poly(methyl methacrylate-co-butyl acrylate) (PMMABA), of different compositions were synthesized and characterized. The effect of alkyl acrylate content, alkyl group substituents and solvents on the ultrasonic degradation of these copolymers was studied. A model based on continuous distribution kinetics was used to study the kinetics of degradation. The rate coefficients were obtained by fitting the experimental data with the model. The linear dependence of the rate coefficients on the logarithm of the vapor pressure of the solvent indicated that vapor pressure is the crucial parameter that controls the degradation process. The rate of degradation increases with an increase in the alkyl acrylate content. At any particular copolymer composition, the rate of degradation follows the order: PMMAMA > PMMAEA > PMMABA. It was observed that the degradation rate coefficient varies linearly with the mole percentage of the alkyl acrylate in the copolymer.
Resumo:
Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formulations on a variety of problems have concluded that both methods yield Solutions of comparable accuracy, and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a class of transient problems, while the continuous-pressure formulation yields solutions that are in good agreement with the analytical Solution.
Resumo:
High-pressure Raman and mid-infrared spectroscopic studies were carried out on ZrP2O7 to 23.2 and 13 GPa respectively. In the pressure range 0.7-4.3 GPa the lattice mode at 248 cm(-1) disappears, new modes appear around 380 and 1111 cm(-1) and the strong symmetric stretching mode at 476 cm(-1) softens, possibly indicating a subtle phase transition. Above 8 GPa all the modes broaden, and all of the Raman modes disappear beyond 18 GPa. On decompression from the highest pressure, 23.2, to 0 GPa all of the modes reappear but with larger full width at half maximum. Lattice dynamics of the high temperature phase of ZrP2O7 were studied using first principles method and compared with experimental values. (C) 2009 Elsevier Ltd. All rights reserved.