126 resultados para POROUS SILICON FILMS
Resumo:
A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.
Resumo:
Permeation of gases through single surfactant stabilized aqueous films has previously been studied in view of the potentiality of foam to separate gaseous mixtures. The earlier analysis assumed that the gas phase was well mixed and that the mass-transfer process was completely controlled by the liquid film. Permeabilities evaluated from single film data based on such analysis failed to predict the mass-transfer data obtained on permeation through two films. It is shown that the neglect of gas-phase resistance and the effect of film movement is the reason for the failure of the well-mixed gas models. An exact analysis of diffusion through two films is presented. It successfully predicts the experimental data on two films based on parameters evaluated from single film data.
Resumo:
Electrical properties of deep defects induced in n-silicon by -particles of about 10 MeV energy at a dose of 1014 and 1015 cm-2 are studied by DLTS. The levels at Ec -0.18 eV, Ec -0.26 eV, and Ec -0.48 eV are identified as A center, V2 (=/-) and V2 (-/0) on the basis of activation energy, electron capture cross section, and annealing behavior. Two other irradiation related levels at Ec -0.28 eV and Ec -0.51 eV could not be related to any known center.
Resumo:
Surface-enhanced Raman scattering (SERS) of pyridine adsorbed on ultrathin nanocrystalline Au and Ag films generated at the liquid-liquid interface has been investigated. The shifts and intensification of bands formed with these films comprising metal nanoparticles are comparable to those found with other types of Au and Ag substrates. SERS of rhodamine 6G adsorbed on Ag films has also been studied. The results demonstrate that nanocrystalline metal films prepared by the simple method involving the organic-aqueous interface can be used effectively for SERS investigations.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.