239 resultados para PEPTIDE IONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The finding that peptides containing -amino acid residues give rise to folding patterns hitherto unobserved in -amino acid peptides[1] has stimulated considerable interest in the conformational properties of peptides built from , and residues,[2] as the introduction of additional methylene (CH2) units into peptide chains provides further degrees of conformational freedom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural characterization in crystals of three designed decapeptides containing a double D-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val- (D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all L analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed a-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-(HO)-O-... hydrogen bond between residue 4 (CH)-H-alpha and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C-alpha atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt at conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-(HO)-O-... hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of N-terminal diproline segments in nucleating helical folding in designed peptides has been studied in two model sequences Piv-Pro-Pro-Aib-Leu-Aib-Phe-OMe (1) and Boc-Aib-Pro-Pro-Aib-Val-Ala-Phe-OMe (2). The structure of 1 in crystals, determined by X-ray diffraction, reveals a helical (RR) conformation for the segment residues 2 to 5, stabilized by one 4 -> 1 hydrogen bond and two 5 -> 1 interactions. The N-terminus residue, Pro(1) adopts a polyproline II (P-II) conformation. NMR studies in three different solvent systems support a conformation similar to that observed in crystals. In the apolar solvent CDCl3, NOE data favor the population of both completely helical and partially unfolded structures. In the former, the Pro-Pro segment adopts an alpha(R)-alpha(R) conformation, whereas in the latter, a P-II-alpha(R) structure is established. The conformational equilibrium shifts in favor of the P-II-alpha(R) structure in solvents like methanol and DMSO. A significant population of the Pro(1)- Pro(2) cis conformer is also observed. The NMR results are consistent with the population of at least three conformational states about Pro- Pro segment: trans alpha(R)-alpha(R), trans P-II-alpha(R) and cis P-II-alpha(R). Of these, the two trans conformers are in rapid dynamic exchange on the NMR time scale, whereas the interconversion between cis and trans form is slow. Similar results are obtained with peptide 2. Analysis of 462 diproline segments in protein crystal structures reveals 25 examples of the alpha(R)-alpha(R) conformation followed by a helix. Modeling and energy minimization studies suggest that both P-II-alpha(R) and alpha(R)-alpha(R) conformations have very similar energies in the model hexapeptide 1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A molecular dynamics study of model ions in water is reported. The van der Waals diameter of both the cations and anions is varied. We have carried out two sets of simulations-with and without dispersion interaction-between the ion and water. Self-diffusivity of the ions exhibits an anomalous maximum as a function of the van der Waals diameter for both these sets. This existence of a maximum in self-diffusivity when there is no dispersion interaction between the ion and the water is attributed to the attractive term from electrostatic interactions. Detailed analysis of this effect shows that the solvent shell is more strongly defined in the presence of dispersion interactions. A smaller ion exhibits biexponential decay while a single exponential decay is seen for the ion with maximum diffusivity in the self-part of the intermediate scattering function. The solvent structure around the ion appears to determine much of the dynamics of the ion. Interesting trends are seen in the activation energies and these can be understood in terms of the levitation effect. (C) 2010 American Institute of Physics. doi:10.1063/1.3481656]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystals of dl-arginine hemisuccinate dihydrate (I)(monoclinic; P21/c; a = 5.292, b = 16.296, c = 15.203 Å; α= 92.89°; Z = 4) and l-arginine hemisuccinate hemisuccinic acid monohydrate (II) (triclinic; P1; a = 5.099; b = 10.222, c = 14.626 Å; α= 77.31, β= 89.46, γ= 78.42°; Z = 2) were grown under identical conditions from aqueous solutions of the components in molar proportions. The structures were solved by direct methods and refined to R = 0.068 for 2585 observed reflections in the case of (I) and R = 0.036 for 2154 observed reflections in the case of (11). Two of the three crystallographically independent arginine molecules in the complexes have conformations different from those observed so far in the crystal structures containing arginine. The succinic acid molecules and the succinate ions in the structures are centrosymmetric and planar. The crystal structure of (II) is highly pseudosymmetric. Arginine-succinate interactions in both the complexes involve specific guanidyl-carboxylate interactions. The basic elements of aggregation in both the structures are ribbons made up of alternating arginine dimers and succinate ions. However, the ribbons pack in different ways in the two structures. (II) presents an interesting case in which two ionisation states of the same molecule coexist in a crystal. The two complexes provide a good example of the effect of change in chirality on stoichiometry, conformation, aggregation, and ionisation state in the solid state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The a.c. conductivity of CaF2 samples containing a fine dispersion of CaO particles has been measured in the temperature range 630 to 1100 K. The conductivity of the dispersed solid electrolyte is two orders of magnitude higher than that for pure polycrystalline CaF2 in the middle of the temperature range. Transport measurements on pure single crystals of CaF2 and polycrystalline samples, with and without CaO dispersion, using Fe+FeO and pure Fe as electrodes, clearly indicate that fluorine ions are the only migrating ionic species with a transport number of almost unity, contrary to the suggestion of Chou and Rapp [1, 2]. The enhanced conductivity of the dispersed solid electrolyte probably arises from two effects. A small solubility of oxygen in CaF2 results in an increase in the fluorine vacancy concentration and conductivity. Adsorption of fluorine ions on the surface of the dispersed particles of CaO results in a space charge region around each particle with enhanced conductivity. Measurements on a galvanic cell incorporating CaF2 as the solid electrolyte and oxide electrodes show that the e.m.f. is a function of the activity of CaO at the electrode/electrolyte interface. The response to an oxygen potential gradient is, therefore, through an exchange reaction, which establishes an equivalent fluorine potential at the electrode/electrolyte interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Palladium complex-catalyzed carbonylation of arylsulfonyl chlorides in the presence of metal alkoxides M(OR)n (M=B, Al, and Ti) gives the corresponding esters along with diaryl disulfides. With metal carboxylates M(OCOR)n (M=Na, K, Ca, Mg, and Zn), the free acids are also obtained

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational studies have been carried out on the X-cis-Pro tripeptide system (a system of three linked peptide units, in the trans-cis-trans configuration) using energy minimization techniques. For X, residues Gly, L-Ala, D-Ala and L-Pro have been used. The energy minima have been classified into different groups based upon the conformational similarity. There are 15, 20, 18 and 6 minima that are possible for the four cases respectively and these fall into 11 different groups. A study of these minima shows that, (i) some minima contain hydrogen bonds - either 4-->1 or 1-->2 type, (ii) the low energy minima qualify themselves as bend conformations, (iii) cis' and trans' conformations are possible for the prolyl residue as also the C(gamma)-endo and C(gamma)-exo puckerings, and (iv) for Pro-cis-Pro, cis' at the first prolyl residue is ruled out, due to the high energy. The available crystal structure data on proteins and peptides, containing cis-Pro segment have been examined with a view to find the minima that occur in solid state. The data from protein show that they fall under two groups. The conformation at X in X-cis-Pro is near extended when it is a non-glycyl residue. In both peptides and proteins there exists a preference for trans' conformation at prolyl residue over cis' when X is a non-glycyl residue. The minima obtained can be useful in modelling studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of two different forms of the calcium perchlorate complex of cyclo(Ala-Leu-Pro-Gly)2 have been determined and refined using X-ray crystallographic techniques. Orthorhombic form: C32H52N8O8.Ca(ClO4)2.7H2O.2CH3OH, space group C222(1), a = 14.366, b = 18.653, c = 19.824 A, Z = 4, R = 0.068 for 2208 observed reflections. Monoclinic form: C32H52N8O8.Ca(ClO4)2.4H2O, space group C2, a = 21.096, b = 10.182, c = 11.256 A, beta = 103.33 degrees, Z = 2, R = 0.075 for 2165 observed reflections. The cyclic peptide molecule in both the structures has the form of a twofold symmetric, slightly elongated bowl. Type II' beta-turns, involving Gly and Ala at the corners, exist at the two ends of the molecule. The interior of the molecule is substantially hydrophilic, and the external surface of the bowl is largely hydrophobic. The calcium ion is located at the centre of the mouth of the bowl-like molecule. In both crystal forms, four peptide carbonyl oxygens from the cyclic peptide and two solvent oxygens coordinate to the metal ion. The mode of complexation may be described as incomplete encapsulation as, for example, in the case of metal complexes of antamanide. In the crystal structures the complex ions are held together by hydrogen bonds involving perchlorate ions and water molecules. The molecular structure observed in the crystals is entirely consistent with the results of solution studies, which also indicate the conformation of the cyclic peptide in the complex to be similar to that of the uncomplexed molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of many proteins orchestrating different biological processes is regulated by allostery, where ligand binding at one site alters the function of another site. Allosteric changes can be brought about by either a change in the dynamics of a protein, or alteration in its mean structure. We have investigated the mechanisms of allostery induced by chemically distinct ligands in the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. PDE5 is the target for catalytic site inhibitors, such as sildenafil, that are used for the treatment of erectile dysfunction and pulmonary hypertension. PDE5 is a multidomain protein and contains two N-terminal cGMP-specific phosphodiesterase, bacterial adenylyl cyclase, FhLA transcriptional regulator (GAF) domains, and a C-terminal catalytic domain. Cyclic GMP binding to the GAFa domain and sildenafil binding to the catalytic domain result in conformational changes, which to date have been studied either with individual domains or with purified enzyme. Employing intramolecular bioluminescence resonance energy transfer, which can monitor conformational changes both in vitro and in intact cells, we show that binding of cGMP and sildenafil to PDE5 results in distinct conformations of the protein. Metal ions bound to the catalytic site also allosterically modulated cGMP- and sildenafil-induced conformational changes. The sildenafil-induced conformational change was temperature-sensitive, whereas cGMP-induced conformational change was independent of temperature. This indicates that different allosteric ligands can regulate the conformation of a multidomain protein by distinct mechanisms. Importantly, this novel PDE5 sensor has general physiological and clinical relevance because it allows the identification of regulators that can modulate PDE5 conformation in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 mum in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thiobacillus ferrooxidans MAL4-1, an isolate from Malanjkhand copper mines, India, was adapted to grow in the presence of high concentration (30 gL(-1)) of Cu2+, resulting in a 15-fold increase in its tolerance to Cu2+. While wild-type T. ferrooxidans MAL4-1 contained multiple plasmids, cultures adapted to Cu2+ concentrations of 20 gL(-1) or more showed a drastic reduction in the copy number of the plasmids. The reduction for three of the plasmids was estimated to be over 50-fold. Examination of the plasmid profiles of the strains adapted to high concentration of SO42- anion (as Na2SO4 or ZnSO4) indicated that the reduction in plasmid copy number is not owing to SO42- anion, but is specific for Cu2+. The effect of mercury on the plasmids was similar to that of copper. Deadaptation of the Cu2+- Or Hg2+-adapted T. ferrooxidans resulted in restoration of the plasmids to the original level within the first passage. The fact that the plasmid copy number, in general, is drastically reduced in Cu2+-adapted T. ferrooxidans suggests that resistance to copper is chromosome mediated. This is the first report of a selective negative influence of copper ions on the copy number of plasmids in T. ferrooxidans.