171 resultados para Order winners
Resumo:
We develop a quadratic C degrees interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn-Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments.
Resumo:
In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.
Resumo:
Error analysis for a stable C (0) interior penalty method is derived for general fourth order problems on polygonal domains under minimal regularity assumptions on the exact solution. We prove that this method exhibits quasi-optimal order of convergence in the discrete H (2), H (1) and L (2) norms. L (a) norm error estimates are also discussed. Theoretical results are demonstrated by numerical experiments.
Resumo:
This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work, we have synthesized a series of TDPP derivatives with different alkyl groups such as n-hexyl (-C6H13) 3a, 2-ethylhexyl (-(2-C2H5)C6H12) 3b, triethylene glycol mono methyl ether (-(CH2CH2O)(3c)H-3, TEG) 3c, and octadodecyl (-(8-C8H17)C12H22) 3d. N,N dialkylation of Othiophene-diketopyrrolopyrrole (TDPP, 1) strongly influences its solubility, solid state packing, and structural order. These materials allow us to explicitly study the influence of alkyl chain on solid state packing and photophysical properties. TDPP moiety containing two different alkyl groups 3e (TEG and 2-ethylhexyl) and 3f (TEG and n-hexyl) were synthesized for the first time. The absorption spectra of all derivatives exhibited a red shift in solid state when compared to their solution spectra. The type of alkyl chains leads to change in the optical band gaps in solid state. The fluorescence study reveals that TDPP derivatives have strong pi-pi interaction in the solid state and the extent of bathochromic shift is due to combination of intramolecular interaction and formation of aggregates in solid state. This behavior strongly depends on the nature of alkyl chain. The presence of strong C-H center dot center dot center dot O inter chain interactions and CH-pi interactions in solid state exhibits strong influence on the photophysical properties of TDPP chromophore.
Resumo:
In this paper, we are interested in high spectral efficiency multicode CDMA systems with large number of users employing single/multiple transmit antennas and higher-order modulation. In particular, we consider a local neighborhood search based multiuser detection algorithm which offers very good performance and complexity, suited for systems with large number of users employing M-QAM/M-PSK. We apply the algorithm on the chip matched filter output vector. We demonstrate near-single user (SU) performance of the algorithm in CDMA systems with large number of users using 4-QAM/16-QAM/64-QAM/8-PSK on AWGN, frequency-flat, and frequency-selective fading channels. We further show that the algorithm performs very well in multicode multiple-input multiple-output (MIMO) CDMA systems as well, outperforming other linear detectors and interference cancelers reported in the literature for such systems. The per-symbol complexity of the search algorithm is O(K2n2tn2cM), K: number of users, nt: number of transmit antennas at each user, nc: number of spreading codes multiplexed on each transmit antenna, M: modulation alphabet size, making the algorithm attractive for multiuser detection in large-dimension multicode MIMO-CDMA systems with M-QAM.
Resumo:
Composite Right/Left Handed (CRLH) transmission line (TL) based electronically tunable 1.5 cell zero order resonator (ZOR) is demonstrated with microstrip technology by use of varactors. A novel mechanism for DC bias for the varactor is proposed. This is achieved by patterning the ground plane of microstrip thereby reducing the complexity of DC feed mechanism. This approach also mitigates the effect of parasitics arising from DC feed choke appearing in the RF signal path.
Resumo:
We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d = 2 and long ranged in d = 3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d = 2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems. DOI: 10.1103/PhysRevLett.110.118102
Resumo:
We develop a unified model to explain the dynamics of driven one dimensional ribbon for materials with strain and magnetic order parameters. We show that the model equations in their most general form explain several results on driven magnetostrictive metallic glass ribbons such as the period doubling route to chaos as a function of a dc magnetic field in the presence of a sinusoidal field, the quasiperiodic route to chaos as a function of the sinusoidal field for a fixed dc field, and induced and suppressed chaos in the presence of an additional low amplitude near resonant sinusoidal field. We also investigate the influence of a low amplitude near resonant field on the period doubling route. The model equations also exhibit symmetry restoring crisis with an exponent close to unity. The model can be adopted to explain certain results on magnetoelastic beam and martensitic ribbon under sinusoidal driving conditions. In the latter case, we find interesting dynamics of a periodic one orbit switching between two equivalent wells as a function of an ac magnetic field that eventually makes a direct transition to chaos under resonant driving condition. The model is also applicable to magnetomartensites and materials with two order parameters. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4790845]
Resumo:
Melting and freezing transitions in two dimensional (2D) systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems: the melting of 2D molecular solids is still largely unexplored. In order to understand the role of anisotropy as well as multiple energy and length scales present in molecular systems, here we report computer simulation studies of melting of 2D molecular systems. We computed a limited portion of the solid-liquid phase diagram. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram consisting of isotropic liquid and two crystalline phases-honeycomb and oblique. The nature of the transition depends on the relative strength of the anisotropic interaction and a strongly first order melting turns into a weakly first order transition on increasing the strength of the isotropic interaction. This crossover can be attributed to an increase in stiffness of the solid phase free energy minimum on increasing the strength of the anisotropic interaction. The defects involved in melting of molecular systems are quite different from those known for the atomic systems.
Resumo:
Structural characterizations using XRD and C-13 NMR spectroscopy of two rodlike mesogens consisting of (i) three phenyl ring core with a polar cyano terminal and (ii) four phenyl ring core with flexible dodecyl terminal chain are presented. The three-ring-core mesogen with cyano terminal exhibits enantiotropic smectic A phase while the four-ring mesogen reveals polymesomorphism and shows enantiotropic nematic, smectic C, and tilted hexatic phases. The molecular organization in the three-ring mesogen is found to be partial bilayer smectic Ad type, and the interdigitation of the molecules in the neighboring layers is attributed to the presence of the polar terminal group. For the four-ring mesogen, the XRD results confirm the existence of the smectic C and the tilted hexatic mesophases. A thermal variation of the layer spacing across the smectic C phase followed by a discrete jump at the transition to the tilted hexatic phase is also observed. The tilt angles have been estimated to be about 45 degrees in the smectic C phase and about 40 degrees in tilted hexatic phase. C-13 NMR results indicate that in the mesophase the molecules are aligned parallel to the magnetic field. From the C-13-H-1 dipolar couplings determined from the 2D experiments, the overall order parameter for the three-ring mesogen in its smectic A phase has been estimated to be 0.72 while values ranging from 0.88 to 0.44 have been obtained for the four-ring mesogen as it passes from the tilted hexatic to the nematic phase. The orientations of the different rings of the core unit with respect to each other and also with respect to the long axis of the molecule have also been obtained.
Resumo:
In this paper, a simple single-phase grid-connected photovoltaic (PV) inverter topology consisting of a boost section, a low-voltage single-phase inverter with an inductive filter, and a step-up transformer interfacing the grid is considered. Ideally, this topology will not inject any lower order harmonics into the grid due to high-frequency pulse width modulation operation. However, the nonideal factors in the system such as core saturation-induced distorted magnetizing current of the transformer and the dead time of the inverter, etc., contribute to a significant amount of lower order harmonics in the grid current. A novel design of inverter current control that mitigates lower order harmonics is presented in this paper. An adaptive harmonic compensation technique and its design are proposed for the lower order harmonic compensation. In addition, a proportional-resonant-integral (PRI) controller and its design are also proposed. This controller eliminates the dc component in the control system, which introduces even harmonics in the grid current in the topology considered. The dynamics of the system due to the interaction between the PRI controller and the adaptive compensation scheme is also analyzed. The complete design has been validated with experimental results and good agreement with theoretical analysis of the overall system is observed.
Resumo:
Multiferroic materials are characterized by simultaneous magnetic and ferroelectric ordering making them good candidates for magneto-electrical applications. We conducted thermal expansion and magnetostriction measurements in magnetic fields up to 14 T on perovskitic GdMnO3 by highresolution capacitive dilatometry in an effort to determine all longitudinal and transversal components of the magnetostriction tensor. Below the ordering temperature T (N) = 42 K, i.e., within the different complex (incommensurate or complex) antiferromagnetic phases, lattice distortions of up to 100 ppm have been found. Although no change of the lattice symmetry occurs, the measurements reveal strong magneto-structural phenomena, especially in the incommensurate sinusoidal antiferromagnetic phase. A strong anisotropy of the magnetoelastic properties was found, in good agreement with the type and propagation vector of the magnetic structure. We demonstrate that our capacitive dilatometry can detect lattice expansion effects and changes of the dielectric permittivity simultaneously because the sample is housed inside the capacitor. A separation of both effects is possible by shielding the sample. Dielectric transitions could be detected by this method and compared to the critical values of H and T in the magnetic phase diagram. Dielectric changes measured at 1 kHz excitation frequency are detected in GdMnO3 at about 180 K, and between 10 K and 25 K in the canted antiferromagnetic structure which is characterized by a complex magnetic order on both the Gd- and Mn-sites.
Resumo:
A power filter is necessary to connect the output of a power converter to the grid so as to reduce the harmonic distortion introduced in the line current and voltage by the power converter. Many a times, a transformer is also present before the point of common coupling. Magnetic components often constitute a significant part of the overall weight, size and cost of the grid interface scheme. So, a compact inexpensive design is desirable. A higher-order LCL-filter and a transformer are increasingly being considered for grid interconnection of the power converter. This study proposes a design method based on a three-winding transformer, that generates an integrated structure that behaves as an LCL-filter, with both the filter inductances and the transformer that are merged into a single electromagnetic component. The parameters of the transformer are derived analytically. It is shown that along with a filter capacitor, the transformer parameters provide the filtering action of an LCL-filter. A single-phase full-bridge power converter is operated as a static compensator for performance evaluation of the integrated filter transformer. A resonant integrator-based single-phase phase locked loop and stationary frame AC current controller are employed for grid frequency synchronisation and line current control, respectively.
Resumo:
In this paper, the authors study the structure of a novel binaural sound with a certain phase and amplitude modulation and the response to this excitation when it is applied to natural rewarding circuit of human brain through auditory neural pathways. This novel excitation, also referred to as gyrosonic excitation in this work, has been found to have interesting effects such as stabilization effects on the left and right hemispheric brain signaling as captured by Galvanic Skin Resistance (GSR) measurements, control of cardiac rhythms (observed from ECG signals), mitigation of psychosomatic syndrome, and mitigation of migraine pain. Experimental data collected from human subjects are presented, and these data are examined to categorize the extent of systems disorder and reinforcement reward due to the gyrosonic stimulus. A multi-path reduced-order model has been developed to analyze the GSR signals. The filtered results are indicative of complicated reinforcing reward patterns due to the gyrosonic stimulation when it is used as a control input for patients with psychosomatic and cardiac disorders.