139 resultados para Numerical Simulations
Resumo:
In this article, we analyze and design ionic polymer metal composite (IPMC) underwater propulsors inspired from swimming of labriform fishes. The structural model of the IPMC fin accounts for the electromechanical dynamics of the bean in water. A quasi steady blade element model that accounts for unsteady phenomena, such as added mass effects, dynamic stall, and cumulativeWagner effect is used to estimate the hydrodynamic performance. Dynamic characteristics of IPMC actuated flapping fins having the same size as the actual fins of three different fish species, Gomphosus varius, Scarus frenatus, and Sthethojulis trilineata, are analyzed using numerical simulations.
Resumo:
Chiral metamaterials have recently gained attention due to their applicability in developing polarization devices and in the detection of chiral molecules. A common approach towards fabricating plasmonic chiral nanostructures has been decorating metallic nanoparticles on dielectric chiral scaffolds, such as a helix. This resulted in the generation of a large chiro-optical response over a wide range of the electromagnetic spectrum. It has been shown previously that the optical tunability of these chiral metamaterials depends on the geometrical aspects of the overall structure, as well as the nature of the plasmonic constituents. In this study, we have investigated the role of the underlying dielectric scaffold with numerical simulations, and experimentally demonstrated that it is possible to enhance and engineer their chiro-plasmonic response significantly by choosing dielectric scaffolds of appropriate materials.
Resumo:
A divergence-free velocity field is usually sought in numerical simulations of incompressible fluids. We show that the particle methods that compute a divergence-free velocity field to achieve incompressibility suffer from a volume conservation issue when a finite time-step position update scheme is used. Further, we propose a deformation gradient based approach to arrive at a velocity field that reduces the volume conservation issues in free surface flows and maintains density uniformity in internal flows while retaining the simplicity of first order time updates. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Early afterdepolarizations (EADs), which are abnormal oscillations of the membrane potential at the plateau phase of an action potential, are implicated in the development of cardiac arrhythmias like Torsade de Pointes. We carry out extensive numerical simulations of the TP06 and ORd mathematical models for human ventricular cells with EADs. We investigate the different regimes in both these models, namely, the parameter regimes where they exhibit (1) a normal action potential (AP) with no EADs, (2) an AP with EADs, and (3) an AP with EADs that does not go back to the resting potential. We also study the dependence of EADs on the rate of at which we pace a cell, with the specific goal of elucidating EADs that are induced by slow or fast rate pacing. In our simulations in two-and three-dimensional domains, in the presence of EADs, we find the following wave types: (A) waves driven by the fast sodium current and the L-type calcium current (Na-Ca-mediated waves); (B) waves driven only by the L-type calcium current (Ca-mediated waves); (C) phase waves, which are pseudo-travelling waves. Furthermore, we compare the wave patterns of the various wave-types (Na-Ca-mediated, Ca-mediated, and phase waves) in both these models. We find that the two models produce qualitatively similar results in terms of exhibiting Na-Ca-mediated wave patterns that are more chaotic than those for the Ca-mediated and phase waves. However, there are quantitative differences in the wave patterns of each wave type. The Na-Ca-mediated waves in the ORd model show short-lived spirals but the TP06 model does not. The TP06 model supports more Ca-mediated spirals than those in the ORd model, and the TP06 model exhibits more phase-wave patterns than does the ORd model.
Resumo:
We perform two and three dimensional numerical simulations of plume formation in density and viscosity stratified fluid systems. We show that the ambient to plume fluid viscosity ratio strongly affects the near wall plume structures (line or sheet plumes) such as plume spacing and shape of plumes. We observe that where mushroom-like plumes are observed for lower viscosity ratios, taller plumes with bulbous heads form for high viscosity ratios. Plume structure and spacing are in good agreement with experimental results. By studying the geometry of the line plumes and the flow in the circulation cells, we discuss the mechanisms of their formation and the dynamics of merging. We show that an increase in the viscosity ratio decreases the total length of line plumes in the planform which indicates a decreased mixing at higher viscosity ratios. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We investigate the transient dynamics of disturbances inside a thermocline based molten salt thermal energy storage (TES). Numerical simulations were conducted with four inlet flow configurations. The disturbances introduced at the inlet grow via Rayleigh Taylor instability. The formed vortical motions inside the tank propagate downstream and destroy the thermocline. The vortex-thermocline interaction upsets the stratification inside the TES. The disturbance growth rate, penetration length and vortex Reynolds number are measured. The growth of penetration length prior to the vortex-thermocline interaction is quadratic. The vortex Reynolds number of the eddy which causes thermocline breakdown increases with increase in Atwood number. The impingement of vortex on thermocline is studied. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A micropolar cohesive damage model for delamination of composites is proposed. The main idea is to embed micropolarity, which brings an additional layer of kinematics through the micro-rotation degrees of freedom within a continuum model to account for the micro-structural effects during delamination. The resulting cohesive model, describing the modified traction separation law, includes micro-rotational jumps in addition to displacement jumps across the interface. The incorporation of micro-rotation requires the model to be supplemented with physically relevant material length scale parameters, whose effects during delamination of modes I and II are brought forth using numerical simulations appropriately supported by experimental evidences. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
It is known in literature that a wheeled mobile robot (WMR) with fixed length axle will slip on an uneven terrain. One way to avoid wheel slip is to use a torus-shaped wheel with lateral tilt capability which allows the distance between the wheel-ground contact points to change even with a fixed length axle. Such an arrangement needs a two degree-of-freedom (DOF) suspension for the vertical and lateral tilting motion of the wheel. In this paper modeling, simulation, design and experimentation with a three-wheeled mobile robot, with torus-shaped wheels and a novel two DOF suspension allowing independent lateral tilt and vertical motion, is presented. The suspension is based on a four-bar mechanism and is called the double four-bar (D4Bar) suspension. Numerical simulations show that the three-wheeled mobile robot can traverse uneven terrain with low wheel slip. Experiments with a prototype three-wheeled mobile robot moving on a constructed uneven terrain along a straight line, a circular arc and a path representing a lane change, also illustrate the low slip capability of the three-wheeled mobile robot with the D4Bar suspension. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Turbulence-transport-chemistry interaction plays a crucial role on the flame surface geometry, local and global reactionrates, and therefore, on the propagation and extinction characteristics of intensely turbulent, premixed flames encountered in LPP gas-turbine combustors. The aim of the present work is to understand these interaction effects on the flame surface annihilation and extinction of lean premixed flames, interacting with near isotropic turbulence. As an example case, lean premixed H-2-air mixture is considered so as to enable inclusion of detailed chemistry effects in Direct Numerical Simulations (DNS). The work is carried out in two phases namely, statistically planar flames and ignition kernel, both interacting with near isotropic turbulence, using the recently proposed Flame Particle Tracking (FPT) technique. Flame particles are surface points residing and commoving with an iso-scalar surface within a premixed flame. Tracking flame particles allows us to study the evolution of propagating surface locations uniquely identified with time. In this work, using DNS and FPT we study the flame speed, reaction rate and transport histories of such flame particles residing on iso-scalar surfaces. An analytical expression for the local displacement flame speed (SO is derived, and the contribution of transport and chemistry on the displacement flame speed is identified. An examination of the results of the planar case leads to a conclusion that the cause of variation in S-d may be attributed to the effects of turbulent transport and heat release rate. In the second phase of this work, the sustenance of an ignition kernel is examined in light of the S-curve. A newly proposed Damkohler number accounting for local turbulent transport and reaction rates is found to explain either the sustenance or otherwise propagation of flame kernels in near isotropic turbulence.
Resumo:
Geocells are three-dimensional expandable panels with a wide range of applications in geotechnical engineering. A geocell is made up of many internally connected single cells. The current study discusses the joint strength and the wall deformation characteristics of a single cell when it is subjected to uniaxial compression. The study helps to understand the causes for the failure of the single cell in a cellular confinement system. Experimental studies were conducted on single cells with cell pockets filled up with three different infill materials, namely silty clay, sand, and the aggregates. The results of the experimental study revealed that the deformation of the geocell wall decreases with the increase in the friction angle of the infill material. Experimental results were also validated using numerical simulations carried out using Lagrangian analysis software. The experiment and the numerical results were found to be in good agreement with each other. A simple analytical model based on the theory of thin cylinders is also proposed to calculate the accumulated strain of the geocell wall. This model operates under a simple elastic solution framework. The proposed model slightly overestimates the strains as compared with experimental and numerical values. (C) 2014 American Society of Civil Engineers.
Resumo:
Numerical simulations were performed of experiments from a cascade of stator blades at three low Reynolds numbers representative of flight conditions. Solutions were assessed by comparing blade surface pressures, velocity and turbulence intensity along blade normals at several stations along the suction surface and in the wake. At Re = 210,000 and 380,000 the laminar boundary layer over the suction surface separates and reattaches with significant turbulence fluctuations. A new 3-equation transition model, the k-k(L)-omega model, was used to simulate this flow. Predicted locations of the separation bubble, and profiles of velocity and turbulence fluctuations on blade-normal lines at various stations along the blade were found to be quite close to measurements. Suction surface pressure distributions were not as close at the lower Re. The solution with the standard k-omega SST model showed significant differences in all quantities. At Re = 640,000 transition occurs earlier and it is a turbulent boundary layer that separates near the trailing edge. The solution with the Reynolds stress model was found to be quite close to the experiment in the separated region also, unlike the k-omega SST solution. Three-dimensional computations were performed at Re = 380,000 and 640,000. In both cases there were no significant differences between the midspan solution from 3D computations and the 2D solutions. However, the 3D solutions exhibited flow features observed in the experiments the nearly 2D structure of the flow over most of the span at 380,000 and the spanwise growth of corner vortices from the endwall at 640,000.
Resumo:
The present work discusses the findings obtained from simulations of semi solid die filling of a steering knuckle, prior to actual component development using in-house developed rheo pressure die casting system. Die filling capability of A356 Al alloy at semi-solid state has been investigated using commercial software Flow-3Dcast to optimise the pouring temperature of semi-solid slurry into the die cavity, while all other variables such as gating design, die preheat temperature and injection velocity are kept constant based on the prior knowledge obtained from trial numerical simulations and experimentation. Efforts have been made to nullify the essence of costly, time consuming experiments towards obtaining high-quality castings out of the findings obtained from numerical simulations. The optimum pouring temperature identified in the present study is 610 A degrees C, which facilitates smoother slurry flow, minimum surface defect concentration, uniform temperature field and solid fraction distribution within the component cavity.
Resumo:
The carrier density dependent current-voltage (J V) characteristics of electrochemically prepared poly(3-methylthiophene) (P3MeT) have been investigated in Pt/P3MeT/Al devices, as a function of temperature from 280 to 84 K. In these devices, the charge transport is found to be mainly governed by different transport regimes of space charge limited conduction (SCLC). In a lightly doped device, SCLC controlled by exponentially distributed traps (Vl+1 law, l > 1) is observed in the intermediate voltage range (0.5-2 V) at all temperatures. However, at higher bias (> 2 V), the current deviates from the usual Vl+1 law where the slope is found to be less than 2 of the logJ-logV plot, which is attributed to the presence of the injection barrier. These deviations gradually disappear at higher doping level due to reduction in the injection barrier. Numerical simulations of the Vl+1 law by introducing the injection barrier show good agreement with experimental data. The results show that carrier density can tune the charge transport mechanism in Pt/P3MeT/Al devices to understand the non-Ohmic behavior. The plausible reasons for the origin of injection barrier and the transitions in the transport mechanism with carrier density are discussed. (C) 2015 AIP Publishing LLC.
Resumo:
Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Numerical simulations are performed to study the stability characteristics of a molten salt thermocline storage unit. Perturbations are introduced into a stable flow field in such a way as to make the top-fluid heavier than the fluid at the bottom, thereby causing a possible instability in the system. The evolution pattern of the various disturbances are examined in detail. Disturbances applied for short duration get decayed before they could reach the thermocline, whereas medium and long duration disturbances evolve into a ``falling spike'' or ``stalactite-like'' structure and destabilize the thermocline. Rayleigh Taylor instability is observed inside the storage tank. The effect of the duration, velocity and temperature of the disturbance on thermocline thickness and penetration length are studied. A quadratic time dependence of penetration length was observed. New perspectives on thermocline breakdown phenomena are obtained from the numerical flow field. (C) 2015 Elsevier Masson SAS. All rights reserved.