424 resultados para Nonlinear diffusion
Resumo:
According to Wen's theory, a universal behavior of the fractional quantum Hall edge is expected at sufficiently low energies, where the dispersion of the elementary edge excitation is linear. A microscopic calculation shows that the actual dispersion is indeed linear at low energies, but deviates from linearity beyond certain energy, and also exhibits an "edge roton minimum." We determine the edge exponent from a microscopic approach, and find that the nonlinearity of the dispersion makes a surprisingly small correction to the edge exponent even at energies higher than the roton energy. We explain this insensitivity as arising from the fact that the energy at maximum spectral weight continues to show an almost linear behavior up to fairly high energies. We also study, in an effective-field theory, how interactions modify the exponent for a reconstructed edge with multiple edge modes. Relevance to experiment is discussed.
Resumo:
We report a general method for the synthesis of hollow structures of a variety of functional inorganics by partial sintering of mesoporous nanocrystal aggregates. The formation of a thin shell initiates the transport of mass from the interior leading to growth of the shell. The principles are general and the hollow structures thus produced are attractive for many applications including catalysis, drug delivery and biosensing.
Resumo:
This paper presents the results of a computational study of laminar axisymmetric plumes generated by the simultaneous diffusion of thermal energy and chemical species. Species concentrations are assumed small. The plume is treated as a boundary layer. Boussinesq approximations are incorporated and the governing conservation equations of mass, momentum, energy and species are suitably non-dimensionalised. These equations are solved using one time-step-forward explicit finite-difference method. Upwind differencing is employed for convective terms. The results thus obtained are explained in terms of the basic physical mechanisms that govern these flows. They show many interesting aspects of the complex interaction of the two buoyant mechanisms.
Resumo:
A pulsed field gradient spin echo NMR spectrometer has been assembled by interfacing a programmable pulse generator and a data acquisition system designed and fabricated in our laboratory with other imported units. Calibration results of the magnetic field gradients are presented.
Resumo:
There is a constant effort to understand the defect structure and diffusion behavior in intermetallic compounds with the A15 structure. Diffusion of elements in intermetallic compounds depends mainly on antisites and vacancies on different sublattices. In this article, we shall discuss the diffusion of elements in A(3)B compounds with the A15 structure.
Resumo:
Nb3Sn growth following the bronze technique, (i.e. by interdiffusion between Cu(Sn) alloy (bronze) and Nb) is one of the important methodologies to produce this superconductor. In this study, we have addressed the confusion over the growth rate of the Nb3Sn phase. Furthermore, a possible explanation for the corrugated layer in the multifilamentary structure is discussed. Kirkendall marker experiments were conducted to study the relative mobilities of the species, which also explained the reason for finding pores in the product phase layer. Based on the parabolic growth constant at different temperatures, the activation energy for the growth is determined. We have further explained the dramatic increase in the growth rate of the prod
Resumo:
There are a number of large networks which occur in many problems dealing with the flow of power, communication signals, water, gas, transportable goods, etc. Both design and planning of these networks involve optimization problems. The first part of this paper introduces the common characteristics of a nonlinear network (the network may be linear, the objective function may be non linear, or both may be nonlinear). The second part develops a mathematical model trying to put together some important constraints based on the abstraction for a general network. The third part deals with solution procedures; it converts the network to a matrix based system of equations, gives the characteristics of the matrix and suggests two solution procedures, one of them being a new one. The fourth part handles spatially distributed networks and evolves a number of decomposition techniques so that we can solve the problem with the help of a distributed computer system. Algorithms for parallel processors and spatially distributed systems have been described.There are a number of common features that pertain to networks. A network consists of a set of nodes and arcs. In addition at every node, there is a possibility of an input (like power, water, message, goods etc) or an output or none. Normally, the network equations describe the flows amoungst nodes through the arcs. These network equations couple variables associated with nodes. Invariably, variables pertaining to arcs are constants; the result required will be flows through the arcs. To solve the normal base problem, we are given input flows at nodes, output flows at nodes and certain physical constraints on other variables at nodes and we should find out the flows through the network (variables at nodes will be referred to as across variables).The optimization problem involves in selecting inputs at nodes so as to optimise an objective function; the objective may be a cost function based on the inputs to be minimised or a loss function or an efficiency function. The above mathematical model can be solved using Lagrange Multiplier technique since the equalities are strong compared to inequalities. The Lagrange multiplier technique divides the solution procedure into two stages per iteration. Stage one calculates the problem variables % and stage two the multipliers lambda. It is shown that the Jacobian matrix used in stage one (for solving a nonlinear system of necessary conditions) occurs in the stage two also.A second solution procedure has also been imbedded into the first one. This is called total residue approach. It changes the equality constraints so that we can get faster convergence of the iterations.Both solution procedures are found to coverge in 3 to 7 iterations for a sample network.The availability of distributed computer systems — both LAN and WAN — suggest the need for algorithms to solve the optimization problems. Two types of algorithms have been proposed — one based on the physics of the network and the other on the property of the Jacobian matrix. Three algorithms have been deviced, one of them for the local area case. These algorithms are called as regional distributed algorithm, hierarchical regional distributed algorithm (both using the physics properties of the network), and locally distributed algorithm (a multiprocessor based approach with a local area network configuration). The approach used was to define an algorithm that is faster and uses minimum communications. These algorithms are found to converge at the same rate as the non distributed (unitary) case.
Resumo:
A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.
Resumo:
An attempt is made to study the Einstein relation for the diffusivity-to-mobility ratio (DMR) under crossed fields' configuration in nonlinear optical materials on the basis of a newly formulated electron dispersion law by incorporating the crystal field in the Hamiltonian and including the anisotropies of the effective electron mass and the spin-orbit splitting constants within the framework of kp formalisms. The corresponding results for III-V, ternary and quaternary compounds form a special case of our generalized analysis. The DMR has also been investigated for II-VI and stressed materials on the basis of various appropriate dispersion relations. We have considered n-CdGeAs2, n-Hg1-xCdxTe, n-In1-xGaxAsyP1-y lattice matched to InP, p-CdS and stressed n-InSb materials as examples. The DMR also increases with increasing electric field and the natures of oscillations are totally band structure dependent with different numerical values. It has been observed that the DMR exhibits oscillatory dependences with inverse quantizing magnetic field and carrier degeneracy due to the Subhnikov-de Haas effect. An experimental method of determining the DMR for degenerate materials in the present case has been suggested. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nonlinear conduction in a single crystal of charge-ordered Pr0.63Ca0.37MnO3 has bren investigated in an applied magnetic field. In zero field, the nonlinear conduction, which starts at T< T-CO, can give rise to a region of negative differential resistance (NDR) which shows up below the Neel temperature. Application of a magnetic field Inhibits the appearance of NDR and makes the nonlinear conduction strongly hysteritic on cycling of the bias current. This is most severe in the temperature range where the charge-ordered state melts in an applied magnetic field. Our experiment strongly suggests that application of a magnetic field in the charge-ordering regime causes a coexistence of two phases.
Resumo:
The problem of controlling the vibration pattern of a driven string is considered. The basic question dealt with here is to find the control forces which reduce the energy of vibration of a driven string over a prescribed portion of its length while maintaining the energy outside that length above a desired value. The criterion of keeping the response outside the region of energy reduction as close to the original response as possible is introduced as an additional constraint. The slack unconstrained minimization technique (SLUMT) has been successfully applied to solve the above problem. The effect of varying the phase of the control forces (which results in a six-variable control problem) is then studied. The nonlinear programming techniques which have been effectively used to handle problems involving many variables and constraints therefore offer a powerful tool for the solution of vibration control problems.
Resumo:
A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.
Resumo:
C28H48N2Oa.H2 O, Mr=494.7, orthorhombic,P2~2~2~, a = 7.634 (2), b = 11.370 (2), c=34. 167 (4) A, V = 2966 (2) A 3, Z = 4, D m = 1.095,D x -- 1. 108 g cm -3, Mo Kct, 2 -- 0.7107 ,/k, ~ =0.43 cm -~, F(000) = 1088.0, T= 293 K, R = 0.061 for 1578 significant reflections. The second-harmonicgeneration (SHG) efficiency of this compound is negligible (1/100th of the urea standard). The observed low second-order nonlinear response has been attributed to the unfavourable packing of the molecules in the crystal lattice.