179 resultados para NATRIURETIC PEPTIDE LEVELS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several variants of hydrated sodium cadmium bisulfate, Na(2)Cd(2)(SO(4))(3) center dot 3H(2)O, Na(2)Cd(SO(4))(2) center dot 2H(2)O, and Na(2)Cd(SO(4))(2) center dot 4H(2)O have been synthesized, and their thermal properties followed by phase transitions have been invesigated. The formation of these phases depends on the stochiometry and the time taken for crystallization from water. Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O, which crystallizes in the trigonal system, space group P3c, is grown from the aqueous solution in about four weeks. The krohnkite type mineral Na(2)Cd(SO(4))(2) center dot 2H(2)O and the mineral astrakhanite, also known as blodite, Na(2)Cd (SO(4))(2)center dot 4H(2)O, crystallize concomittantly in about 24 weeks. Both these minerals belong to the monoclinic system(space group P2(1)/c). Na(2)Cd(2)(SO(4))(3)center dot 3H(2)O loses water completely when heated to 250 degrees C and transforms to a dehydrated phase (cubic system, space group I (4) over bar 3d) whose structure has been established using ab initio powder diffration techniques. Na(2)Cd(SO(4))(2)center dot 2H(2)O transforms to alpha-Na(2)Cd(SO(4))(2) (space group C2/c) on heating to 150 degrees C which is a known high ionic conductor and remains intact over prolonged periods of exposure to moisture (over six months). However, when alpha-Na(2)Cd(SO(4))(2) is heated to 570 degrees C followed by sudden quenching in liquid nitrogen beta-Na(2)Cd(SO(4))(2) (P2(1)/c) is formed. beta-Na(2)Cd(SO(4))(2) takes up water from the atmosphere and gets converted completely to the krohnkite type mineral in about four weeks. Further, beta-Na(2)Cd(SO(4))(2) has a conductivity behavior comparable to the a-form up to 280 degrees C, the temperature required for the transformation of the beta- to alpha-form. These experiments demonstrate the possibility of utilizing the abundantly available mineral sources as precursors to design materials with special properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) studies were carried out on a-Se and a few Ge20Se80−xBix and Ge20Se70−xBixTe10 bulk glassy semiconductors at 4.2 K with Ar+ laser as excitation source. While a-Se and samples with lesser at% of Bi show fine structured PL with a large Stokes shift, samples with higher at% of Bi did not show any detectable PL. The investigations show at least three radiative recombination transitions. Features extracted by deconvoluting the experimental spectra show that the discrete gap levels associated with the inherent coordination defects are involved in the PL transitions. Absence of PL in samples with higher Bi at% are explained on the basis of nonradiative transition mechanisms. Overall PL mechanism involving gap levels in chalcogenide glasses is illustrated with the help of a configurational coordinate diagram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fragmentation behavior of two classes of cyclodepsipeptides, isariins and isaridins, obtained from the fungus Isaria, was investigated in the presence of different metal ions using multistage tandem mass spectrometry (MS(n)) with collision induced dissociation (CID) and validated by NMR spectroscopy. During MS(n) process, both protonated and metal-cationized isariins generated product ions belonging to the identical `b-ion' series, exhibiting initial backbone cleavage explicitly at the beta-ester bond. Fragmentation behavior for the protonated and metal-cationized acyclic methyl ester derivative of isariins was very similar. On the contrary, isaridins during fragmentation produced ions belonging to the `b' or/and the `y' ion series depending on the nature of interacting metal ions, due to initial backbone cleavages at the beta-ester linkage or/and at a specific amide linkage. Interestingly, independent of the nature of the interacting metal ions, the product ions formed from the acyclic methyl ester derivative of isaridins belonged only to the `y-type'. Complementary NMR data showed that, while all metal ions were located around the beta-ester group of isariins, the metal ion interacting sites varied across the backbone for isaridins. Combined MS and NMR data suggest that the different behavior in sequence specific charge-driven fragmentation of isariins and isaridins is predetermined because of the constituent beta-hydroxy acid residue in isariins and the cis peptide bond in isaridins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of non-planarity of the peptide unit on helical structures stabilized by intrachain hydrogen bonds is discussed. While the present calculations generally agree with those already reported in the literature for right-handed helical structures, it is found that the most stable left-handed structure is a novel helix, called the delta-helix. Its helical parameters are close to these reported for poly-beta-benzyl-L -aspartate. Conformational energy calculations show that poly-beta-benzyl-L -aspartate with the delta-helical structure is considerably more stable than the structure it is generally believed to take up (the omega-helix) by about 15 kcal/mol-residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The apicoplast of Plasmodium harbors several metabolic pathways. The enzymes required to perform these reactions are all nuclearly encoded and apicoplast targeted (NEAT) proteins. Plasmodium falciparum Enoyl-ACP Reductase (PfENR) is one such NEAT protein. The NEAT proteins have a transit peptide which is required for crossing the membranes of apicoplast. We studied the importance of basic residues like Arginine and Lysine within the transit peptide. Previous studies have suggested that all basic residues are essential for apicoplast trafficking. In this study, we demonstrate that only some of these residues are essential (K44, R48, K51, and R52), whereas others are dispensable (R40, K42, and K49). On mutating these specific residues, PfENR is not imported into the apicoplast and is mislocalized to the cytoplasm. We also demonstrate that these residues are also crucial for interaction with Hsp70-1, implying that interactions of Lysine 44, Arginine 48, Lysine 51, and Arginine 52 of the transit peptide with PfHsp70-1 are required for apicoplast trafficking. 15-Deoxyspergualin, which has earlier been proposed to interact with EEVD motif of PfHsp70-1 hinders the physical interaction between these cationic residues of PfENR and Hsp70-1. Hence, we propose that in the transport competent state of NEAT proteins some specific positively charged amino acids in the transit peptide interact with PfHsp70-1, and this interaction is essential for apicoplast targeting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.