131 resultados para NADH Tetrazolium Reductase
Resumo:
The present research focused on determining the effect of hydroxyapatite-20 wt% mullite (H20M) particle eluates on apoptosis and differentiation of human fetal osteoblast (hFOB) cells. The H20M particles (257 +/- 37 nm) were prepared, starting with the production of a nanocomposite using a unique route of spark plasma sintering, followed by a repeated grinding-cryo treatment and elution process. Tetrazolium based cytotoxicity assay results showed a time-and dose-dependent effect of H20M particle eluates on hFOB cytotoxicity. In particular, the results revealed statistically reduced cell viability after hFOB were exposed to the above 10% H20M (257 +/- 37 nm) eluates for 48 h. The apoptotic cell death triggered by H20M treatment was proven by the analysis of molecular markers of apoptosis, that is, the Bcl-2 family of genes. hFOB expression of Bcl-xL and Bcl-xS significantly increased 25.6- and 25.2-fold for 50% of H20M concentrations, respectively. The ratio of Bcl-xL/Bax (4.01) decreased 2-fold for hFOB exposed to 100% of H20M eluates than that for 10% H20M eluate (7.94) treated hFOB cells. On the other hand, the Bcl-xS/Bax ratio for the 10% H20M eluate was 4.15-fold, whereas for 100% H20M eluates, it was 11.55-fold. Specifically, the anti-apoptotic effect of the H20M particle eluates was corroborated by the up-regulation of bone cell differentiation marker genes such as, collagen type I, cbfa, and osteocalcin. In summary, the present work clearly demonstrated that H20M submicron to nanometer composite particle eluates have a minimal effect on hFOB apoptosis and can even up-regulate the expression of bone cell markers at the molecular level.
Resumo:
Many fishes are exposed to air in their natural habitat or during their commercial handling. In natural habitat or during commercial handling, the cat fish Heteropneustes fossilis is exposed to air for > 24 h. Data on its oxidative metabolism in the above condition are not available. Oxidative stress (OS) indices (lipid and protein oxidation), toxic reactive oxygen species (ROS: H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and nonprotein sulfhydryl) and activities of electron transport chain (ETC) enzymes (complex I-IV) were investigated in brain tissue of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 degrees C). Decreased activities of antioxidant (except catalase) and ETC enzymes (except complex II) with increased H2O2 and OS levels were observed in the tissue under water deprivation condition. Positive correlation was observed for complex II activity and non-protein thiol groups with time period of air exposure. The critical time period to induce OS and to reduce most of the studied antioxidant level in brain was found to be 3-6 h air exposure. The data can be useful to minimize the stress generated during commercial handling of the live fishes those exposed to air in general and H. fossilis in particular. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
Resumo:
Dendrimers as vectors for gene delivery were established, primarily by utilizing few prominent dendrimer types so far. We report herein studies of DNA complexation efficacies and gene delivery vector properties of a nitrogen-core poly(propyl ether imine) (PETIM) dendrimer, constituted with 22 tertiary amine internal branches and 24 primary amines at the periphery. The interaction of the dendrimer with pEGFPDNA was evaluated through UV-vis, circular dichroism (CD) spectral studies, ethidium bromide fluorescence emission quenching, thermal melting, and gel retardation assays, from which most changes to DNA structure during complexation was found to occur at a weight ratio of dendrimer:DNA similar to 2:1. The zeta potential measurements further confirmed this stoichiometry at electroneutrality. The structure of a DNA oligomer upon dendrimer complexation was simulated through molecular modeling and the simulation showed that the dendrimer enfolded DNA oligomer along both major and minor grooves, without causing DNA deformation, in 1:1 and 2:1 dendrimer-to-DNA complexes. Atomic force microscopy (AFM) studies on dendrimer-pEGFP DNA complex showed an increase in the average z-height as a result of dendrimers decorating the DNA, without causing a distortion of the DNA structure. Cytotoxicity studies involving five different mammalian cell lines, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide] (MTT) assay, reveal the dendrimer toxicity profile (IC50) values of similar to 400-1000 mu g mL(-1), depending on the cell line tested. Quantitative estimation, using luciferase assay, showed that the gene transfection was at least 100 times higher when compared to poly(ethylene imine) branched polymer, having similar number of cationic sites as the dendrimer. The present study establishes the physicochemical behavior of new nitrogen-core PETIM dendrimer-DNA complexes, their lower toxicities, and efficient gene delivery vector properties.
Resumo:
The primary purpose of the present work was to illustrate whether cell proliferation can be enhanced on electroactive bioceramic composite, when the cells are cultured in the presence of external electrical stimulation. The two different aspects of the influence of electric field (E-field) application toward stimulating the growth/proliferation of bone/connective tissue cells in vitro, (a) intermittent delivery of extremely low strength pulsed electrical stimulation (0.5-4V/cm, 400s DC pulse) and (b) surface charge generated by electrical poling (10kV/cm) of hydroxyapatite (HA)-BaTiO3 piezobiocomposite have been demonstrated. The experimental results establish that the cell growth can be enhanced using the new culture protocol of the intermittent delivery of electrical pulses within a narrow range of stimulation parameters. The optimal E-field strength for enhanced cellular response for mouse fibroblast L929 and osteogenic cells is in the range of 0.5-1V/cm. The MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay results suggested the increased viability of E-field treated cells over 7d in culture, implicating the positive impact of electrical pulses on proliferation behavior. The alizarin red assay results showed noticeable increase in Ca-deposition on the E-field treated samples in comparison to their untreated counterparts. The negatively charged surfaces of developed piezocomposite stimulated the cell growth in a statistically noticeable manner as compared with the uncharged or positively charged surfaces of similar composition.
Resumo:
Ten new organometallic half-sandwich ruthenium complexes with heterocyclic ligands have been synthesized (H1-H10). The substituents on the ancillary heterocyclic ligands were varied to understand the effect of substitution on anticancer activity. The crystallographic characterization of five complexes confirms that they adopt three-legged piano-stool structures and are stabilized by intramolecular hydrogen bonding. Complexes H2 and H3 also exhibit halogen bonding in the solid state. In aqueous media, the complexes form dinuclear ruthenium species. Complex H1 with a noncytotoxic heterocycle, 6-fluoro-2-mercaptobenzothiazole, and complex H11 with the unsubstituted 2-mercaptobenzothiazole are the most active against A2780 and KB cell lines. The substitution of the H atoms on the ancillary ligand with Cl or Br atoms leads to a decrease in the anticancer activity. With the exception of fluorine-substituted H5, the complexes with mercaptobenzoxazole (H6-H9) are inactive against all of the tested cell lines. Ruthenium complexes with mercaptonaphthimidazole (H10) and mercaptobenzimidazole (H13) do not show any anticancer activity. The active complexes show a biphasic melting curve when incubated with calf thymus (CT) DNA. These complexes only inhibit thioredoxin reductase (TrxR) enzyme activity to a small extent. The substitution of hydrogen atoms with fluorine atoms in the aromatic heterocyclic ligands on organometallic half-sandwich ruthenium complexes has the most beneficial effect on their anticancer activity.
Resumo:
New anti-tubercular agents, imidazo1,2-a]pyridine-2-carboxamide derivatives (5a-q) have been designed and synthesized. The structural considerations of the designed molecules were further supported by the docking study with a long-chain enoyl-acyl carrier protein reductase (InhA). The chemical structures of the new compounds were characterized by IR, H-1 NMR, C-13 NMR, HRMS and elemental analysis. In addition, single crystal X-ray diffraction has also been recorded for compound 5f. Compounds were evaluated in vitro against Mycobacterium tuberculosis H37Rv, and cytotoxicity against HEK-293T cell line. Amongst the tested compounds 5j, 5l and 5q were emerged as good anti-tubercular agents with low cytotoxicity. The structure-anti TB activity relationship of these derivatives was explained by molecular docking. (C) 2014 Elsevier Masson SAS. All rights reserved.
Resumo:
A new, phenoxo-bridged Cu-II dinuclear complex Cu-2(L)(2)(DMF)(2)] (1) has been obtained by employing the coumarin-assisted tridentate precursor, H2L, benzoic acid(7-hydroxy-4-methyl-2-oxo-2H-chromen-8-ylmethylene)-hydrazide]. Complex 1 has been systematically characterized by FTIR, UV-Vis, fluorescence and PR spectrometry. The single crystal X-ray diffraction analysis of 1 shows that the geometry around each copper ion is square pyramidal, comprising two enolato oxygen atoms belonging to different ligands (which assemble the dimer bridging the two metal centers), one imine-N and one phenolic-O atoms of the Schiff base and one oxygen atom from the DMF molecule. The temperature dependent magnetic interpretation agrees with the existence of weak ferromagnetic interactions between the bridging dinuclear Cu(II) ions. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy towards M. tuberculosis H37Rv ATCC 27294 and M. tuberculosis H37Ra ATCC 25177 strains. The cytotoxicity study on human adenocarcinoma cell lines (MCF7) suggests that the ligand and complex 1 have potential anticancer properties. Molecular docking of H2L with the enoyl acyl carrier protein reductase of M. tuberculosis H37R(v) (PDB ID: 4U0K) is examined and the best docked pose of H2L shows one hydrogen bond with Thr196 (1.99 angstrom).
Resumo:
Development of effective therapies to eradicate persistent, slowly replicating M. tuberculosis (Mtb) represents a significant challenge to controlling the global TB epidemic. To develop such therapies, it is imperative to translate information from metabolome and proteome adaptations of persistent Mtb into the drug discovery screening platforms. To this end, reductive sulfur metabolism is genetically and pharmacologically implicated in survival, pathogenesis, and redox homeostasis of persistent Mtb. Therefore, inhibitors of this pathway are expected to serve as powerful tools in its preclinical and clinical validation as a therapeutic target for eradicating persisters. Here, we establish a first functional HTS platform for identification of APS reductase (APSR) inhibitors, a critical enzyme in the assimilation of sulfate for the biosynthesis of cysteine and other essential sulfur-containing molecules. Our HTS campaign involving 38?350 compounds led to the discovery of three distinct structural classes of APSR inhibitors. A class of bioactive compounds with known pharmacology displayed potent bactericidal activity in wild-type Mtb as well as MDR and XDR clinical isolates. Top compounds showed markedly diminished potency in a conditional Delta APSR mutant, which could be restored by complementation with Mtb APSR. Furthermore, ITC studies on representative compounds provided evidence for direct engagement of the APSR target. Finally, potent APSR inhibitors significantly decreased the cellular levels of key reduced sulfur-containing metabolites and also induced an oxidative shift in mycothiol redox potential of live Mtb, thus providing functional validation of our screening data. In summary, we have identified first-in-class inhibitors of APSR that can serve as molecular probes in unraveling the links between Mtb persistence, antibiotic tolerance, and sulfate assimilation, in addition to their potential therapeutic value.
Resumo:
Hitherto, electron transfer (ET) between redox proteins has been deemed to occur via donor-acceptor binding, and diffusible reactive species are considered as deleterious side-products in such systems. Herein, ET from cytochrome P450 reductase (CPR, an animal membrane flavoprotein) and horseradish peroxidase (HRP, a plant hemoprotein) to cytochrome c (Cyt c, a soluble animal hemoprotein) was probed under diverse conditions, using standard assays. ET in the CPR-Cyt c system was critically inhibited by cyanide and sub-equivalent levels of polar one-electron cyclers like copper ions, vitamin C/Trolox and superoxide dismutase. In the presence of lipids, inhibition was also afforded by amphipathic molecules vitamin E, palmitoyl-vitamin C and the membrane hemoprotein, cytochrome b(5). Such nonspecific inhibition (by diverse agents in both aqueous and lipid phases) indicated that electron transfer/relay was effected by small diffusible agents, whose lifetimes are shortened by the diverse radical scavengers. When CPR was retained in a dialysis membrane and Cyt c presented outside in free solution, ET was still observed. Further, HRP (taken at nM levels) catalyzed oxidation of a phenolic substrate was significantly inhibited upon the incorporation of sub-nM levels of Cyt c. The findings imply that CPR-Cyt c or HRP-Cyt c binding is not crucial for ET. Further, fundamental quantitative arguments (based on diffusion/collision) challenge the erstwhile protein-protein binding-assisted ET hypothesis. It is proven beyond reasonable doubt that mobile and diffusible electron carriers (ions and radicals) serve as ``redox-relay agents'' in the biological ET models/setup studied.
Resumo:
Antifolates are competitive inhibitors of dihydrofolate reductase ( DHFR), a conserved enzyme that is central to metabolism and widely targeted in pathogenic diseases, cancer and autoimmune disorders. Although most clinically used antifolates are known to be target specific, some display a fair degree of cross-reactivity with DHFRs from other species. A method that enables identification of determinants of affinity and specificity in target DHFRs from different species and provides guidelines for the design of antifolates is currently lacking. To address this, we first captured the potential druggable space of a DHFR in a substructure called the `supersite' and classified supersites of DHFRs from 56 species into 16 `site-types' based on pairwise structural similarity. Analysis of supersites across these site-types revealed that DHFRs exhibit varying extents of dissimilarity at structurally equivalent positions in and around the binding site. We were able to explain the pattern of affinities towards chemically diverse antifolates exhibited by DHFRs of different site-types based on these structural differences. We then generated an antifolate-DHFR network by mapping known high-affinity antifolates to their respective supersites and used this to identify antifolates that can be repurposed based on similarity between supersites or antifolates. Thus, we identified 177 human-specific and 458 pathogen-specific antifolates, a large number of which are supported by available experimental data. Thus, in the light of the clinical importance of DHFR, we present a novel approach to identifying differences in the druggable space of DHFRs that can be utilized for rational design of antifolates.