665 resultados para Metallic films


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin films at fluid interfaces are important not only from a fundamental point of view as 2D complex fluids but have also become increasingly relevant in the development of novel functional materials. There has been an explosion in the synthesis work in this area over the last decade, giving rise to many exotic nanostructures at fluid interfaces. However, the factors controlling particle nucleation, growth and self-assembly at interfaces are poorly understood on a quantitative level. We will outline some of the recent attempts in this direction. Some of the selected investigations examining the macroscopic mechanical properties of molecular and particulate films at fluid interfaces will be reviewed. We conclude with a discussion of the electronic properties of these films that have potential technological and biological applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive study of the thickness dependent structural, magnetic and magnetotransport properties of oriented La0.5Sr0.5CoO3 thin films grown on LaAlO3 by Pulsed Laser Deposition. We observe that these films undergo a reduction in Curie temperature (T-c) with a decrease in film thickness, and it is found to be primarily caused by the finite size effect since the finite scaling law [T-c(infinity) T-c(t)/T-c(infinity) = (c/t)lambda holds good over the studied thickness range. We rule out the contribution from the strain induced suppression of Curie temperature with decreasing film thickness since all the films exhibit a constant out of plane tensile strain (0.5%) irrespective of their varying thickness. However, we observe that the coercivity of the films is an order of magnitude higher than that of the bulk due to the tensile strain. In addition, we also observe an increase in the magneto resistance peak and a decrease in coercivity and electrical resistivity with an increase in film thickness. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multiwall carbon nanotube (MWNT)-polystyrene (PS) composites, a weak temperature dependence of conductivity has been observed at a percolation threshold of 0.4 wt %. The power law [sigma(T)proportional to T-0.3] behavior indicates metallic-like behavior, unlike the usual activated transport for systems near the percolation threshold. The low field positive magnetoconductance follows H-2 dependence, due to the weak localization in disordered metallic systems. The marginal metallic nature of MWNT-PS at percolation threshold is further verified from the negligible frequency dependence of conductivity, in the temperature range of 300 to 5 K. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3455895]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stiffness, strength, and toughness are the three primary attributes of a material, in terms of its mechanical properties. Bulk metallic glasses (BMGs) are known to exhibit elastic moduli at a fraction lower than crystalline alloys and have extraordinary strength. However, the reported values of fracture toughness of BMGs are highly variable; some BMGs such as the Zr-based ones have toughness values that are comparable to some high strength steels and titanium alloys, whereas there are also BMGs that are almost as brittle as silicate glasses. Invariably, monolithic BMGs exhibit no or low crack growth resistance and tend to become brittle upon structural relaxation. Despite its critical importance for the use of BMGs as structural materials, the fracture toughness of BMGs is relatively poorly understood. In this paper, we review the available literature to summarize the current understanding of the mechanics and micromechanisms of BMG toughness and highlight the needs for future research in this important area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been established by photoemission studies that Ge in obliquely deposited pure Ge and Ge-chalcogenide thin films undergoes predominant photooxidation when irradiated with band gap photons. The role of Ge appears to be that of providing a highly porous low density microstructure and photooxidation seems to be a direct consequence of such large scale porosity in these films. The formation of low vapour pressure oxide fractions of Ge and Te and volatile high vapour pressure oxide fractions of S and Se is responsible for anomalous photoinduced transformations in these films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review gives a brief description of the historical development followed by the origin and the principle of operation of strain gauges. The features of an ideal strain gauge for measurement purposes and the general classes of strain gauges are given. The remaning part is devoted to an important development in strain gauge technology, namely thin film strain gauges. After highlighting the advantages of thin film strain gauges, a review of current data is given. Detailed description of metallic thin film strain gauges is provided and avaliable information on alloy semiconductor and cermet films for their possible use as strain gauge elements has also been included. The importance of ion implantation in tailoring the properties of strain gauges is highlighted. 33 ref.--AA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural features,including preferred orientation and surface morphology of zinc oxide (ZnO) films deposited by combustion flame pyrolysis were investigated as a function of process parameters, which include precursor solution concentration, substrate-nozzle (S-N) distance, gas flow rate, and duration of deposition. In this technique, the precursor droplets react within the flame and form a coating on an amorphous silica substrate held in or near the flame. Depending on the process parameters, the state of decomposition at which the precursor arrives on the substrate varies substantially and this in turn dictates the orientation and microstructure of the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of the piezoresistivity in nanostructured. polycrystalline films of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 grown on oxidized Si (100) substrates. We have observed that the hole doped rare-earth manganites, which are well known for being colossal magnetoresistive (CMR) show change in its resistance under uniaxial strain even at room temperature. The piezoresistance was measured at room temperature by bending the Si cantilevers (on which the film is grown) in flexural mode both with compressive and tensile strain. The resistance of the film increases with tensile strain and decreases with compressive strain. A large gauge factor of 15-20 is seen in these films at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter we characterize strain in Si1-xGex based heterojunction bipolar transistors and modulation doped field effect transistors grown by rapid thermal chemical vapor deposition exploiting the phenomenon of strain-induced birefringence. The technique used is multiple angle of incidence ellipsometry at a wavelength of 670 nm to measure the ordinary and extraordinary refractive indices of the Si1-xGex films. We report measurements on thin fully strained films (with thicknesses less than the critical thickness) with Ge concentration varying from 9% to 40% with an accuracy of the order of 1 part in 10(4) and propose an empirical relation between the difference in the ordinary and extraordinary refractive indices (deltan) and the Ge concentration (x) given by deltan(x)=0.18x-0.12x(2). (C) 2000 American Institute of Physics. [S0003-6951(00)03948-6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lead zirconate thin films were deposited using KrF (248 nm) excimer laser ablation technique. Utilization of antiferroelectric materials is proposed in high charge storage capacitors and microelectromechanical (MEMs) devices. The antiferroelectric nature of lead zirconate thin films was confirmed by the presence of double hysteresis behavior in polarization versus applied field response. By controlling the processing parameters, two types of microstructures evolved, namely columnar (or in-situ) and multi-grained (or ex-situ) in PZ thin films. The dielectric and electrical properties of the lead zirconate thin films were studied with respect to the processing parameters. Analysis on charge transport mechanism, using space charge limited conduction phenomenon, showed the presence of both shallow and deep trap sites in the PZ thin films. The estimated shallow trap energies were 0.448 and 0.491 eV for in-situ and ex-situ films, with respective concentrations of approximate to 7.9 x 10(18)/cc and approximate to 2.97 x 10(18)/cc. The deep trap energies with concentrations were 1.83 eV with 1.4 x 10(16)/cc for ex-situ and 1.76 eV with 3.8 x 10(16)/cc for in-situ PZ thin films, respectively. These activation energies were found to be consistent with the analysis from Arrhenius plots of de current densities. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ex-situ grown thin films of SrBi2Nb2O9 (SBN) were deposited on platinum substrates using laser ablation technique. A low substrate-temperature-processing route was chosen to avoid any diffusion of bismuth into the Pt electrode. It was observed that the as grown films showed an oriented growth along the 'c'-axis (with zero spontaneous polarization). The as grown films were subsequently annealed to enhance crystallization. Upon annealing, these films transformed into a polycrystalline structure, and exhibited excellent ferroelectric properties. The switching was made to be possible by lowering the thickness without losing the electrically insulating behavior of the films. The hysteresis results showed an excellent square-shaped loop with results (P-r = 4 muC/cm(2) E-c = 90 kV/cm) in good agreement with the earlier reports. The films also exhibited a dielectric constant of 190 and a dissipation factor of 0.02, which showed dispersion at low frequencies. The frequency dispersion was found to obey Jonscher's universal power law relation, and was attributed to the ionic charge hopping process according to earlier reports. The de transport studies indicated an ohmic behavior in the low voltage region, while higher voltages induced a bulk space charge and resulted in non-linear current-voltage dependence.