183 resultados para Melting methods
Resumo:
We consider the jump in resistance at the melting transition, which is experimentally observed to be constant, independent of magnetic field (vortex density). We present an explanation of this effect based on vortex cuttings, and universalities of the structure factor at the freezing transition (the Hansen-Verlet criterion).
Resumo:
We have studied the magnetic field dependent rf (20 MHz) losses in Bi2Sr2CaCu2O8 single crystals in the low field and high temperature regime. Above HCl the dissipation begins to decrease as the field is increased and exhibits a minimum at HM>HCl. For H>HM the loss increases monotonically. We attribute the decrease in loss above HCl to the stiffening of the vortex lines due to the attractive electromagnetic interaction between the 2D vortices (that comprise the vortex line at low fields) in adjacent CuO bilayers. The minimum at HM implies that the vortex lines are stiffest and hence represents a transition into vortex solid state from the narrow vortex liquid in the vicinity of HCl. The increase in loss for H>HM marks the melting of the vortex lattice and hence a second transition into vortex liquid regime. We discuss our results in the light of recent theory of reentrant melting of the vortex lattice by G. Blatter et al. (Phys. Rev. B 54, 72 (1996)).
Resumo:
In this paper, we consider the problem of computing numerical solutions for Ito stochastic differential equations (SDEs). The five-stage Milstein (FSM) methods are constructed for solving SDEs driven by an m-dimensional Wiener process. The FSM methods are fully explicit methods. It is proved that the FSM methods are convergent with strong order 1 for SDEs driven by an m-dimensional Wiener process. The analysis of stability (with multidimensional Wiener process) shows that the mean-square stable regions of the FSM methods are unbounded. The analysis of stability shows that the mean-square stable regions of the methods proposed in this paper are larger than the Milstein method and three-stage Milstein methods.
Resumo:
This work analyses the influence of several design methods on the degree of creativity of the design outcome. A design experiment has been carried out in which the participants were divided into four teams of three members, and each team was asked to work applying different design methods. The selected methods were Brainstorming, Functional Analysis, and SCAMPER method. The `degree of creativity' of each design outcome is assessed by means of a questionnaire offered to a number of experts and by means of three different metrics: the metric of Moss, the metric of Sarkar and Chakrabarti, and the evaluation of innovative potential. The three metrics share the property of measuring the creativity as a combination of the degree of novelty and the degree of usefulness. The results show that Brainstorming provides more creative outcomes than when no method is applied, while this is not proved for SCAMPER and Functional Analysis.
Resumo:
A careful comparison of the experimental results reported in the literature reveals different variations of the melting temperature even for the same materials. Though there are different theoretical models, thermodynamic model has been extensively used to understand different variations of size-dependent melting of nanoparticles. There are different hypotheses such as homogeneous melting (HMH), liquid nucleation and growth (LNG) and liquid skin melting (LSM) to resolve different variations of melting temperature as reported in the literature. HMH and LNG account for the linear variation where as LSM is applied to understand the nonlinear behaviour in the plot of melting temperature against reciprocal of particle size. However, a bird's eye view reveals that either HMH or LSM has been extensively used by experimentalists. It has also been observed that not a single hypothesis can explain the size-dependent melting in the complete range. Therefore we describe an approach which can predict the plausible hypothesis for a given data set of the size-dependent melting temperature. A variety of data have been analyzed to ascertain the hypothesis and to test the approach.
Resumo:
In this paper we study constrained maximum entropy and minimum divergence optimization problems, in the cases where integer valued sufficient statistics exists, using tools from computational commutative algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. We give an implicit description of maximum entropy models by embedding them in algebraic varieties for which we give a Grobner basis method to compute it. In the cases of minimum KL-divergence models we show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner basis method to embed minimum KL-divergence models in algebraic varieties. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called `early warning signals', and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.
Resumo:
The three-component chiral derivatization protocols have been developed for H-1, C-13 and F-19 NMR spectroscopic discrimination of chiral diacids by their coordination and self-assembly with optically active (R)-alpha-methylbenzylamine and 2-formylphenylboronic acid or 3-fluoro-2-formylmethylboronic acid. These protocols yield a mixture of diastereomeric imino-boronate esters which are identified by the well-resolved diastereotopic peaks with significant chemical shift differences ranging up to 0.6 and 2.1 ppm in their corresponding H-1 and F-19 NMR spectra, without any racemization or kinetic resolution, thereby enabling the determination of enantiopurity. A protocol has also been developed for discrimination of chiral alpha-methyl amines, using optically pure trans-1,2-cyclohexanedicarboxylic acid in combination with 2-formylphenylboronic acid or 3-fluoro-2-fluoromethylboronic acid. The proposed strategies have been demonstrated on large number of chiral diacids and chiral alpha-methyl amines.
Resumo:
Bulk metallic glass (BMG) matrix composites with crystalline dendrites as reinforcements exhibit a wide variance in their microstructures (and thus mechanical properties), which in turn can be attributed to the processing route employed, which affects the size and distribution of the dendrites. A critical investigation on the microstructure and tensile properties of Zr/Ti-based BMG composites of the same composition, but produced by different routes, was conducted so as to identify ``structure-property'' connections in these materials. This was accomplished by employing four different processing methods-arc melting, suction casting, semi-solid forging and induction melting on a water-cooled copper boat-on composites with two different dendrite volume fractions, V-d. The change in processing parameters only affects microstructural length scales such as the interdendritic spacing, lambda, and dendrite size, delta, whereas compositions of the matrix and dendrite are unaffected. Broadly, the composite's properties are insensitive to the microstructural length scales when V-d is high (similar to 75%), whereas they become process dependent for relatively lower V-d (similar to 55%). Larger delta in arc-melted and forged specimens result in higher ductility (7-9%) and lower hardening rates, whereas smaller dendrites increase the hardening rate. A bimodal distribution of dendrites offers excellent ductility at a marginal cost of yield strength. Finer lambda result in marked improvements in both ductility and yield strength, due to the confinement of shear band nucleation sites in smaller volumes of the glassy phase. Forging in the semi-solid state imparts such a microstructure. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303
Resumo:
Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.
Resumo:
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.
Resumo:
Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear problems, the solution obtained in the iterative process can diverge due to numerical instability. As a result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive environment. Reliable solution methods which do not need Jacobian calculation at each iteration are needed for this problem. In this paper, a comparative study is done by incorporating different methods for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the Jacobian at the initial guess are investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Present study performs the spatial and temporal trend analysis of annual, monthly and seasonal maximum and minimum temperatures (t(max), t(min)) in India. Recent trends in annual, monthly, winter, pre-monsoon, monsoon and post-monsoon extreme temperatures (t(max), t(min)) have been analyzed for three time slots viz. 1901-2003,1948-2003 and 1970-2003. For this purpose, time series of extreme temperatures of India as a whole and seven homogeneous regions, viz. Western Himalaya (WH), Northwest (NW), Northeast (NE), North Central (NC), East coast (EC), West coast (WC) and Interior Peninsula (IP) are considered. Rigorous trend detection analysis has been exercised using variety of non-parametric methods which consider the effect of serial correlation during analysis. During the last three decades minimum temperature trend is present in All India as well as in all temperature homogeneous regions of India either at annual or at any seasonal level (winter, pre-monsoon, monsoon, post-monsoon). Results agree with the earlier observation that the trend in minimum temperature is significant in the last three decades over India (Kothawale et al., 2010). Sequential MK test reveals that most of the trend both in maximum and minimum temperature began after 1970 either in annual or seasonal levels. (C) 2012 Elsevier B.V. All rights reserved.