198 resultados para Matrices doublement stochastiques


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider Gaussian multiple-input multiple-output (MIMO) channels with discrete input alphabets. We propose a non-diagonal precoder based on X-Codes in to increase the mutual information. The MIMO channel is transformed into a set of parallel subchannels using Singular Value Decomposition (SVD) and X-codes are then used to pair the subchannels. X-Codes are fully characterized by the pairings and the 2 × 2 real rotation matrices for each pair (parameterized with a single angle). This precoding structure enables to express the total mutual information as a sum of the mutual information of all the pairs. The problem of finding the optimal precoder with the above structure, which maximizes the total mutual information, is equivalent to i) optimizing the rotation angle and the power allocation within each pair and ii) finding the optimal pairing and power allocation among the pairs. It is shown that the mutual information achieved with the proposed pairing scheme is very close to that achieved with the optimal precoder by Cruz et al., and significantly better than mercury/waterfilling strategy by Lozano et al.. Our approach greatly simplifies both the precoder optimization and the detection complexity, making it suitable for practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the immense growth in the number of available protein structures, fast and accurate structure comparison has been essential. We propose an efficient method for structure comparison, based on a structural alphabet. Protein Blocks (PBs) is a widely used structural alphabet with 16 pentapeptide conformations that can fairly approximate a complete protein chain. Thus a 3D structure can be translated into a 1D sequence of PBs. With a simple Needleman-Wunsch approach and a raw PB substitution matrix, PB-based structural alignments were better than many popular methods. iPBA web server presents an improved alignment approach using (i) specialized PB Substitution Matrices (SM) and (ii) anchor-based alignment methodology. With these developments, the quality of similar to 88% of alignments was improved. iPBA alignments were also better than DALI, MUSTANG and GANGSTA(+) in > 80% of the cases. The webserver is designed to for both pairwise comparisons and database searches. Outputs are given as sequence alignment and superposed 3D structures displayed using PyMol and Jmol. A local alignment option for detecting subs-structural similarity is also embedded. As a fast and efficient `sequence-based' structure comparison tool, we believe that it will be quite useful to the scientific community. iPBA can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/ipba/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for the explicit determination of the polar decomposition (and the related problem of finding tensor square roots) when the underlying vector space dimension n is arbitrary (but finite), is proposed. The method uses the spectral resolution, and avoids the determination of eigenvectors when the tensor is invertible. For any given dimension n, an appropriately constructed van der Monde matrix is shown to play a key role in the construction of each of the component matrices (and their inverses) in the polar decomposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aluminium nitride (AlN)-Al matrices reinforced with Al2O3 particulate have been fabricated by reactive infiltration of Al-2% Mg alloy into Al2O3 preforms in N-2 in the temperature range of 900-1075 degreesC. The growth of composites of useful thickness was facilitated by the presence of a Mg-rich external getter, in the absence of which composite growth is self-limiting and terminates prematurely. Successful growth of composites has been attributed to the reduction in residual oxygen partial pressure brought about by the reaction with oxygen of highly volatile Mg in the getter alloy. The microstructure of the matrix consists of AlN-rich regions contiguous with the particulate with metal-rich channels in-between, thereby suggesting that nitridation initiates by preferential wicking of alloy along the particle surfaces. The increase in nitride content of the matrix with temperature is consistent with hardness values that vary between similar to3 and 10 GPa. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a new parallel algorithm for nonlinear transient dynamic analysis of large structures has been presented. An unconditionally stable Newmark-beta method (constant average acceleration technique) has been employed for time integration. The proposed parallel algorithm has been devised within the broad framework of domain decomposition techniques. However, unlike most of the existing parallel algorithms (devised for structural dynamic applications) which are basically derived using nonoverlapped domains, the proposed algorithm uses overlapped domains. The parallel overlapped domain decomposition algorithm proposed in this paper has been formulated by splitting the mass, damping and stiffness matrices arises out of finite element discretisation of a given structure. A predictor-corrector scheme has been formulated for iteratively improving the solution in each step. A computer program based on the proposed algorithm has been developed and implemented with message passing interface as software development environment. PARAM-10000 MIMD parallel computer has been used to evaluate the performances. Numerical experiments have been conducted to validate as well as to evaluate the performance of the proposed parallel algorithm. Comparisons have been made with the conventional nonoverlapped domain decomposition algorithms. Numerical studies indicate that the proposed algorithm is superior in performance to the conventional domain decomposition algorithms. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent paper, we combined the technique of bosonization with the concept of a Rayleigh dissipation function to develop a model for resistances in one-dimensional systems of interacting spinless electrons Europhys. Lett. 93, 57007 (2011)]. We also studied the conductance of a system of three wires by using a current splitting matrix M at the junction. In this paper, we extend our earlier work in several ways. The power dissipated in a three-wire system is calculated as a function of M and the voltages applied in the leads. By combining two junctions of three wires, we examine a system consisting of two parallel resistances. We study the conductance of this system as a function of the M matrices and the two resistances; we find that the total resistance is generally quite different from what one expects for a classical system of parallel resistances. We do a sum over paths to compute the conductance of this system when one of the two resistances is taken to be infinitely large. We study the conductance of a three-wire system of interacting spin-1/2 electrons, and show that the charge and spin conductances can generally be different from each other. Finally, we consider a system of two wires that are coupled by a dissipation function, and we show that this leads to a current in one wire when a voltage bias is applied across the other wire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we evaluate performance of a real-world image processing application that uses a cross-correlation algorithm to compare a given image with a reference one. The algorithm processes individual images represented as 2-dimensional matrices of single-precision floating-point values using O(n4) operations involving dot-products and additions. We implement this algorithm on a nVidia GTX 285 GPU using CUDA, and also parallelize it for the Intel Xeon (Nehalem) and IBM Power7 processors, using both manual and automatic techniques. Pthreads and OpenMP with SSE and VSX vector intrinsics are used for the manually parallelized version, while a state-of-the-art optimization framework based on the polyhedral model is used for automatic compiler parallelization and optimization. The performance of this algorithm on the nVidia GPU suffers from: (1) a smaller shared memory, (2) unaligned device memory access patterns, (3) expensive atomic operations, and (4) weaker single-thread performance. On commodity multi-core processors, the application dataset is small enough to fit in caches, and when parallelized using a combination of task and short-vector data parallelism (via SSE/VSX) or through fully automatic optimization from the compiler, the application matches or beats the performance of the GPU version. The primary reasons for better multi-core performance include larger and faster caches, higher clock frequency, higher on-chip memory bandwidth, and better compiler optimization and support for parallelization. The best performing versions on the Power7, Nehalem, and GTX 285 run in 1.02s, 1.82s, and 1.75s, respectively. These results conclusively demonstrate that, under certain conditions, it is possible for a FLOP-intensive structured application running on a multi-core processor to match or even beat the performance of an equivalent GPU version.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size and strain rate effects are among several factors which play an important role in determining the response of nanostructures, such as their deformations, to the mechanical loadings. The mechanical deformations in nanostructure systems at finite temperatures are intrinsically dynamic processes. Most of the recent works in this context have been focused on nanowires [1, 2], but very little attention has been paid to such low dimensional nanostructures as quantum dots (QDs). In this contribution, molecular dynamics (MD) simulations with an embedded atom potential method(EAM) are carried out to analyse the size and strain rate effects in the silicon (Si) QDs, as an example. We consider various geometries of QDs such as spherical, cylindrical and cubic. We choose Si QDs as an example due to their major applications in solar cells and biosensing. The analysis has also been focused on the variation in the deformation mechanisms with the size and strain rate for Si QD embedded in a matrix of SiO2 [3] (other cases include SiN and SiC matrices).It is observed that the mechanical properties are the functions of the QD size, shape and strain rate as it is in the case for nanowires [2]. We also present the comparative study resulted from the application of different EAM potentials in particular, the Stillinger-Weber (SW) potential, the Tersoff potentials and the environment-dependent interatomic potential (EDIP) [1]. Finally, based on the stabilized structural properties we compute electronic bandstructures of our nanostructures using an envelope function approach and its finite element implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates in-line spring-mass systems (An), fixed at one end and free at the other, with n-degrees of freedom (d.f.). The objective is to find feasible in-line systems (B(n)) that are isospectral to a given system. The spring-mass systems, A(n) and B(n), are represented by Jacobi matrices. An error function is developed with the help of the Jacobi matrices A(n) and B(n). The problem of finding the isospectral systems is posed as an optimization problem with the aim of minimizing the error function. The approach for creating isospectral systems uses the fact that the trace of two isospectral Jacobi matrices A(n) and B(n) should be identical. A modification is made to the diagonal elements of the given Jacobi matrix (A(n)), to create the isospectral systems. The optimization problem is solved using the firefly algorithm augmented by a local search procedure. Numerical results are obtained and resulting isospectral systems are shown for 4 d.f. and 10 d.f. systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Let G = (V,E) be a weighted undirected graph, with non-negative edge weights. We consider the problem of efficiently computing approximate distances between all pairs of vertices in G. While many efficient algorithms are known for this problem in unweighted graphs, not many results are known for this problem in weighted graphs. Zwick [14] showed that for any fixed ε> 0, stretch 1 1 + ε distances between all pairs of vertices in a weighted directed graph on n vertices can be computed in Õ(n ω) time, where ω < 2.376 is the exponent of matrix multiplication and n is the number of vertices. It is known that finding distances of stretch less than 2 between all pairs of vertices in G is at least as hard as Boolean matrix multiplication of two n×n matrices. It is also known that all-pairs stretch 3 distances can be computed in Õ(n 2) time and all-pairs stretch 7/3 distances can be computed in Õ(n 7/3) time. Here we consider efficient algorithms for the problem of computing all-pairs stretch (2+ε) distances in G, for any 0 < ε < 1. We show that all pairs stretch (2 + ε) distances for any fixed ε> 0 in G can be computed in expected time O(n 9/4 logn). This algorithm uses a fast rectangular matrix multiplication subroutine. We also present a combinatorial algorithm (that is, it does not use fast matrix multiplication) with expected running time O(n 9/4) for computing all-pairs stretch 5/2 distances in G. 1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present an algebraic method to study and design spatial parallel manipulators that demonstrate isotropy in the force and moment distributions.We use the force and moment transformation matrices separately,and derive conditions for their isotropy individually as well as in combination. The isotropy conditions are derived in closed-form in terms of the invariants of the quadratic forms associated with these matrices. The formulation has been applied to a class of Stewart platform manipulators. We obtain multi-parameter families of isotropic manipulator analytically. In addition to computing the isotropic configurations of an existing manipulator,we demonstrate a procedure for designing the manipulator for isotropy at a given configuration.