247 resultados para METHYL-METHACRYLATE POLYMERIZATION
Resumo:
Addition of hydrogen cyanide to 9-methyl-Δ4-octalone-3 (IIb), as a model, yielded both cis- and trans-ketonitriles the configurations of which are assigned on the basis of IR spectra of the hydrolysed products. Similar addition of hydrogen cyanide to 9β-methyl-8β-hydroxy-Δ4-octalone-3 (IIc) gave the corresponding cis- and trans-hydroxy-keto-nitriles, configurations of which were proved by their conversion into cis- and trans-keto-nitriles obtained in the model study. In contrast to the model experiment where the trans-product predominated, the cis-isomer was the major product of addition to IIc.
Resumo:
The polyphosphoric acid induced intramolecular acylation of lactones has been applied to the synthesis of the bicyclo [0,3,5] decane system, and the preparation of azulene, 1-methyl-, 2-methyl- and 1,3-dimethylazulene is reported.
Resumo:
The conformation about the ethene bond [1.316 (3) angstrom] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)degrees with the benzene and bromo-substituted benzene rings, respectively. High-lighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)degrees.
Resumo:
In the title compound, C18H11ClN2O2, the isatin and 2-chloro-3-methylquinoline units are both almost planar, with r.m.s.deviations of 0.0075 and 0.0086 angstrom, respectively, and the dihedral angle between the mean planes of the two units is 83.13 (7)degrees. In the crystal, a weak intermolecular C-H center dot center dot center dot O interaction links the molecules into chains along the c axis.
Resumo:
The Raman spectra of methyl alcohol, ethyl alcohol, n-propyl alcohol and n-butyl alcohol have been recorded using λ 2537 excitation. 35, 49, 45 and 51 Raman lines respectively have been identified in the spectra of these alcohols, in addition to the rotational 'wings'. In each case, a large number of additional lines have been recorded. The existence of Raman lines with frequency shifts greater than 3800 cm.-1, first reported by Bolla in the spectrum of ethyl alcohol, has been confirmed. Similar high-frequency shift Raman lines have also been recorded in the spectrum of methyl alcohol. They have been assigned as combinations. Proper assignments have been given for the prominent Raman lines appearing in the spectra of these alcohols.
Resumo:
The molecular structure of methyl azide has been studied by the sector-microphotometer and the sector-visual methods of electron diffraction and the parameters determined as follows: C-N = 1.47 ± 0.02 Å., N1-N2 = 1.24 ± 0.01 Å., N2-N3 = 1.12 ± 0.01 Å. and
Resumo:
The title molecule, C5H7N3O2, has an almost planar conformation, with a maximum deviation of 0.043 (3) angstrom, except for the methyl H atoms. In the crystal structure, intermolecular C-H center dot center dot center dot O hydrogen bonds link the molecules into layers parallel to the bc plane. Intermolecular pi-pi stacking interactions [centroid-centroid distances = 3.685 (2) and 3.697 (2) angstrom] are observed between the parallel triazole rings.
Resumo:
The crystal and molecular structure has been determined by the heavy-atom method and refined by the least-squares procedure to R= 8"3 % for 2033 photographically observed reflexions. The compound crystallizes in the space group P]" with two molecules in a unit cell of dimensions a = 11"68 + 0-02, b = 12"91 +0"02, c= 10"43+0"02/~, e= 114"7+ 1, fl=90-2+ 1 and 7,= 118.3+ 1 °. The unit cell also contains one molecule of the solvent, benzene. The 'cage' part of the molecule exhibits a large number of elongated bonds and strained internal valency angles. The bridgehead angle in the bicyclic heptane ring system is 89 °. The acetate group at C(16) and the methyl group at C(15) are cis to each other.