196 resultados para MAGNETIC-PROPERTIES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two heterometallic coordination polymers (CPs) have been prepared using (NiL)-L-II](2)Co-II (where H2L = N,N'-bis(salicylidene)-1,3-propanediamine) as nodes and dicyanamido spacers by varying the solvent for synthesis. Structural characterizations revealed that methanol assisted the formation of a two-dimensional (4,4) connected rhombic grid network of (NiL)(2)Co(NCNCN)2](infinity) (1a) whereas relatively less polar acetonitrile afforded a different superstructure {(NiL)(2)Co(NCNCN)(2)]center dot CH3CN}(infinity) (1b) with a two-dimensional (4,4) connected square grid network. The presence of acetonitrile molecules in the structure of 1b seems to change the spatial orientation of the terminal metalloligands NiL] from pseudo-eclipsed in 1a to staggered-like in 1b around the central Co(II). These structural changes in the nodes together with the conformationally flexible dicyanamido spacers, which are cis coordinated to the Co(II) in both trinuclear units, led to the differences in the final 2D network. Variable-temperature magnetic susceptibility measurements revealed that this supramolecular isomerism led to a drastic transition from spin-frustrated antiferromagnetism for 1a to a dominant ferromagnetic behaviour for 1b. The geometrical differences in Ni2Co coordination clusters (CCs) which are scalene triangular in 1a but nearly linear in 1b, are held responsible for the changes of the magnetic properties. The DFT calculations of exchange interactions between metal centres provide a clear evidence of the role played by the fundamental geometrical factors on the nature and magnitude of the magnetic coupling in these pseudo-polymorphic CPs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Free nanoparticles of iron (Fe) and their colloids with high saturation magnetization are in demand for medical and microfluidic applications. However, the oxide layer that forms during processing has made such synthesis a formidable challenge. Lowering the synthesis temperature decreases rate of oxidation and hence provides a new way of producing pure metallic nanoparticles prone to oxidation in bulk amount (large quantity). In this paper we have proposed a methodology that is designed with the knowledge of thermodynamic imperatives of oxidation to obtain almost oxygen-free iron nanoparticles, with or without any organic capping by controlled milling at low temperatures in a specially designed high-energy ball mill with the possibility of bulk production. The particles can be ultrasonicated to produce colloids and can be bio-capped to produce transparent solution. The magnetic properties of these nanoparticles confirm their superiority for possible biomedical and other applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same nuclearities have very similar or even almost identical basic structures. However, the way these building units are joined together (by the azido bridges) to form the overall extended structures differ almost in every case. The complexes having the Cu-6 core are particularly interesting from a structural point of view. Although they have almost identical basic structures, some of them are extended in three dimensions, but two of them are extended in two dimensions by two different bridging networks. In the complexes having linear Cu-4 basic units, we find that using similar ligands does not always give the same bridging networks even within the basic building structures. These complexes have also enriched the field of molecular magnetism. One of the complexes with a Cu-3 building unit has provided us with the opportunity to study the competing behavior of two different kinds of magnetic exchange mechanism (ferromagnetic and antiferromagnetic) acting simultaneously between two metal ions. Through density functional theory calculations, we showed how they work independently and their additive nature to produce the overall effect. The exciting methodology for the generation of copper(II) polyclusters presented in this Account will provide the opportunity to explore analogous serendipitous assembly of diverse structures with interesting magnetic behavior using other transition metal ions having more than one unpaired electrons.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The parent compound of iron chalcogenide superconductors, Fe1+yTe, with a range of excess Fe concentrations exhibits intriguing structural and magnetic properties. Here, the interplay of magnetic and structural properties of Fe1.12Te single crystals have been probed by low-temperature synchrotron X-ray powder diffraction, magnetization, and specific heat measurements. Thermodynamic measurements reveal two distinct phase transitions, considered unique to samples possessing excess Fe content in the range of 0.11 <= y <= 0.13. On cooling, an antiferromagnetic transition, T-N approximate to 57K is observed. A closer examination of powder diffraction data suggests that the transition at TN is not purely magnetic, but accompanied by the commencement of a structural phase transition from tetragonal to orthorhombic symmetry. This is followed by a second prominent first-order structural transition at T-S with T-S < T-N, where an onset of monoclinic distortion is observed. The results point to a strong magneto-structural coupling in this material. (C) 2014 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a comparative study of the temperature dependent magnetic properties and electron paramagnetic resonance parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Bulk BSMO is known to have a high T-N similar to 260K and robust charge ordering (T-CO similar to 360 K). We confirm that the bulk sample shows an antiferromagnetic transition around similar to 260K and a spin-glass transition similar to 40 K. For the nano sample, we see a clear ferromagnetic transition at around similar to 120 K. We conclude that spin glass state, which is present due to the co-existence of antiferromagnetic and ferromagnetic states in the bulk sample, is suppressed in the nano sample and ferromagnetism is induced instead. (C) 2014 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The composites of xSrFe(12)O(19)-(1-x) BaTiO3 where x=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1were prepared by Sol gel method and consequently densified at 1100 degrees C/90 min using microwave sintering method. The phase formation and diphase microstructure of the composite samples was examined by X-ray diffraction and field emission electron microscope (FESEM), respectively. The effects of constituent phase variation on the ferroelecrric, dielectric and magnetic properties were examined. It was observed that with a decrease of x, the Curie temperature shifted towards low temperature side. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Towards fundamental studies and potential applications, achieving precise control over the generation of defects in pure ZnO nanocrystals has been always intriguing. Herein, we explored the rote of spectator ions (Co2+ and Ni2+) in influencing the functional properties of ZnO nanocrystals. The crystalline quality, phase purity, and composition of as-prepared samples were thoroughly established by powder X-ray diffraction, electron microscopy (TEM and STEM), and by Raman and X-ray photoelectron spectroscopies (XPS). Despite the presence of Co2+ and Ni2+ ions in the reaction mixture, STEM-energy dispersive spectroscopy (EDS), XPS analysis, and inductively-coupled plasma mass spectrometry (ICP-MS) revealed that the ZnO nanocrystals formed are dopant-free. Even so, their luminescence and magnetic properties were substantially different from those of pure ZnO nanocrystals synthesized using a similar methodology. We attribute the origin of these properties to the defects associated with ZnO nanocrystals generated under different but optimized conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pyrophosphate cathodes have been recently reported as a competent family of insertion compounds for sodium-ion batteries. In the current study, we have investigated the binary Na2 - x(Fe1 - yMny)P2O7 (0 <= y <= 1) pyrophosphate family, synthesized by the classical solid-state method. They form a continuous solid solution maintaining triclinic P-1 (#2) symmetry. The local structural coordination differs mainly by different degrees of Na site occupancy and preferential occupation of the Fe2 site by Mn. The structural and magnetic properties of these mixed-metal pyrophosphate phases have been studied. In each case, complete Fe3+/Fe2+ redox activity has been obtained centered at 3 V vs. Na. The Fe3+/Fe2+ redox process involves multiple steps between 2.5 and 3 V owing to Na-cation ordering during electrochemical cycling, which merge to form a broad single Fe3+/Fe2+ redox peak upon progressive Mn-doping. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Iron nanostructures with morphology ranging from discrete nanoparticles to nearly monodisperse hierarchical nanostructures have been successfully synthesized using solvated metal atom dispersion (SMAD) method. Such a morphological evolution was realized by tuning the molar ratio of ligand to metal. Surface energy minimization in confluence with strong magnetic interactions and ligand-based stabilization results in the formation of nanospheres of iron. The as-prepared amorphous iron nanostructures exhibit remarkably high coercivity in comparison to the discrete nanoparticles and bulk counterpart. Annealing the as-prepared amorphous Fe nanostructures under anaerobic conditions affords air-stable carbon-encapsulated Fe(0) and Fe3C nanostructures with retention of the morphology. The resulting nanostructures were thoroughly analyzed by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Raman spectroscopy. TGA brought out that Fe3C nanostructures are more robust toward oxidation than those of a-Fe. Finally, detailed magnetic studies were carried out by superconducting quantum interference device (SQUID) magnetometer and it was found that the magnetic properties remain conserved even upon exposure of the annealed samples to ambient conditions for months.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have investigated structural, dielectric, and magnetic properties of polycrystalline double perovskite Nd2NiMnO6 compound. The compound crystallizes in monoclinic P2(1)/n symmetry and is partially B-site disordered depending on the synthesis conditions. It undergoes second-order ferromagnetic transition at 192K and shows glassy behaviour at low temperature. The glassy phase is due to anti-site disorder within the homogeneous sample. Temperature and frequency dependent dielectric measurements reveal colossal values of dielectric constant and is best interpreted using Maxwell-Wagner interfacial polarization model. Impedance spectroscopy has been used to analyse the intrinsic dielectric response. This enabled us to differentiate the conduction process at the grain and grain boundaries. Arrhenius behaviour is favoured at the grain boundary, while variable range hopping mechanism is considered most suitable within the grain region. dc conductivity measurements corroborate variable range hopping conduction. (C) 2015 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, for the first time, we have reported the novel synthesis of reduced graphene oxide (r-GO) dendrite kind of nanomaterial. The proposed r-GO dendrite possesses multifunctional properties in various fields of sensing and separation. The dendrite was synthesized by chemical reaction in different steps. Initially, the r-GO sheet was conjugated with silane group modified magnetic nanoparticle, resulting in nanoparticle decorated r-GO. The above r-GO sheet was further reacted with a new r-GO sheet, resulting in the formation of r-GO dendrite type of structure. Multifunctional behavior of this r-GO dendrite structure was studied by different methods. First, magnetic properties were studied by vibrating sample magnetometer (VSM) and it was found that dendrite structure shows good magnetic susceptibility (180.2 emu/g). The proposed r-GO dendrite also shows a very good antibacterial behavior for Escherichia coli and excellent electrochemical behavior towards ferrocyanide probe molecule. Along with these, it also acts as a substrate for the synthesis of molecularly imprinted polymer for europium metal ion, a lanthanide. The proposed imprinted sensor shows a very high selectivity and sensitivity for europium metal ion (limit of detection= 0.019 mu g L-1) in aqueous as well as real samples. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Among the multiple modulatory physical cues explored to regulate cellular processes, the potential of magneto-responsive substrates in magnetic field stimulated stem cell differentiation is still unperceived. In this regard, the present work demonstrates how an external magnetic field can be applied to direct stem cell differentiation towards osteogenic commitment. A new culture methodology involving periodic delivery of 100 mT static magnetic field (SMF) in combination with HA-Fe3O4 magnetic substrates possessing a varying degree of substrate magnetization was designed for the study. The results demonstrate that an appropriate combination of weakly ferromagnetic substrates and SMF exposure enhanced cell viability, DNA synthesis and caused an early switchover to osteogenic lineage as supported by Runx2 immunocytochemistry and ALP expression. However, the mRNA expression profile of early osteogenic markers (Runx2, ALP, Col IA) was comparable despite varying substrate magnetic properties (diamagnetic to ferromagnetic). On the contrary, a remarkable upregulation of late bone development markers (OCN and OPN) was explicitly detected on weak and strongly ferromagnetic substrates. Furthermore, SMF induced matrix mineralization with elevated calcium deposition on similar substrates, even in the absence of osteogenic supplements. More specifically, the role of SMF in increasing intracellular calcium levels and in inducing cell cycle arrest at G0/G1 phase was elucidated as the major molecular event triggering osteogenic differentiation. Taken together, the above results demonstrate the competence of magnetic stimuli in combination with magneto-responsive biomaterials as a potential strategy for stem cell based bone tissue engineering.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied the effect of Fe doping on structural, magnetic, and dielectric properties of hexagonal ErMnO3 system. For 50% doping of Fe on Mn site in ErMnO3 modulated its crystallographic structure from hexagonal to orthorhombic phase. Accompanied with the structural phase transition in ErMnO3, the magnetic properties are effectively modified. The Fe doped samples exhibit enhancement in antiferromagnetic ordering Neel temperature (T-N) from 77K (ErMnO3) to 280K (ErFe0.5Mn0.5O3). The anomalies observed in the dielectric constant around T-N in doped ErMnO3 samples indicate the coupling between electric and magnetic order parameters. (C) 2015 AIP Publishing LLC.