223 resultados para Lattice Solid Model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

C17H19ClO, M(r) = 274.7, triclinic, P1BAR, a = 11.154 (3), b = 12.685 (2), c = 12.713 (2) angstrom, alpha = 100.68 (1), beta = 113.58 (1), gamma = 104.50 (2)-degrees, V = 1511.1 (6) angstrom3, Z = 4, D(m) = 1.22, D(x) = 1.215 Mg m-3, Cu K-alpha, lambda = 1.5418 angstrom, mu = 2.16 mm-1, F(000) = 584, T = 293 K, R = 0.057 for 3481 observed reflections. The title compound is photostable in the crystalline state and lattice-energy calculations have been employed to rationalize the photobehaviour. The well-known beta-steering ability of the chloro group is not operative in this system as there are no Cl...Cl interactions in the crystal lattice. All five benzylidene-DL-piperitone structures so far studied are alpha-packed and the molecular topology appears to be a deciding factor even in the presence of steering groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report here the results of structural and vibrational studies on the solid solution Fe1 ? xNixPS3 (1 greater-or-equal, slanted x greater-or-equal, slanted 0) systems. From the structural analysis, we show that there is a lattice compaction as the composition x is varied from 0 to 1, the basic lattice symmetry being maintained. We find that the compaction is more in the basal plane. These subtle structural changes are also reflected in the vibrational bands. We observed splitting of certain bands due to these small changes in the lattice constants, which we explained as arising from a correlation splitting. These changes in the vibrational bands have also been seen on cooling where there is a preferential thermal compaction in the basal plane compared to that perpendicular to the plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model for glucose and oxygen consumption, and cell growth during fungal growth on a single solid particle is developed. A moving biofilm is assumed to be present on the surface of the solid particle. Initially only glucose is assumed to be growth limiting and later oxygen transferred from the gas phase on to the biofilm is also assumed to be growth limiting. Glucose is found to be severely growth limiting when assumed to be the only growth limiting factor and its limiting levels far less severe when oxygen limitation is also included. The objective of the model is to gain a better understanding of the mass transfer and relative growth limiting characteristics of glucose and oxygen in fungal growth systems. The results obtained from the model proposed here will be the subject of future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dipolar systems, both liquids and solids, constitute a class of naturally abundant systems that are important in all branches of natural science. The study of orientational relaxation provides a powerful method to understand the microscopic properties of these systems and, fortunately, there are many experimental tools to study orientational relaxation in the condensed phases. However, even after many years of intense research, our understanding of orientational relaxation in dipolar systems has remained largely imperfect. A major hurdle towards achieving a comprehensive understanding is the long range and complex nature of dipolar interactions which also made reliable theoretical study extremely difficult. These difficulties have led to the development of continuum model based theories, which although they provide simple, elegant expressions for quantities of interest, are mostly unsatisfactory as they totally neglect the molecularity of inter-molecular interactions. The situation has improved in recent years because of renewed studies, led by computer simulations. In this review, we shall address some of the recent advances, with emphasis on the work done in our laboratory at Bangalore. The reasons for the failure of the continuum model, as revealed by the recent Brownian dynamics simulations of the dipolar lattice, are discussed. The main reason is that the continuum model predicts too fast a decay of the torque-torque correlation function. On the other hand, a perturbative calculation, based on Zwanzig's projection operator technique, provides a fairly satisfactory description of the single particle orientational dynamics for not too strongly polar dipolar systems. A recently developed molecular hydrodynamic theory that properly includes the effects of intermolecular orientational pair correlations provides an even better description of the single-particle orientational dynamics. We also discuss the rank dependence of the dielectric friction. The other topics reviewed here includes dielectric relaxation and solvation dynamics, as they are intimately connected with orientational relaxation. Recent molecular dynamics simulations of the dipolar lattice are also discussed. The main theme of the present review is to understand the effects of intermolecular interactions on orientational relaxation. The presence of strong orientational pair correlation leads to a strong coupling between the single particle and the collective dynamics. This coupling can lead to rich dynamical properties, some of which are detailed here, while a major part remains yet unexplored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the d=infinity or local-approximation approach to the half-filled Hubbard model on a compressible lattice, we present a detailed study of the transport and structural properties near the paramagnetic metal-insulator transition. The results describe qualitatively most of the observed data in V2O3, including the metal-insulator-metal crossover [Kuwamoto et al., Phys. Rev. B 22, 2626 (1980)]. In addition, we discuss an interesting and intrinsic reentrance feature in the resistivity of the half-filled Hubbard model at high temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat-up times derived from studies on the ignition characteristics of a few model composite solid propellants, containing polystyrene, carboxy-terminated polybutadiene, plasticised polyvinyl chloride and polyphenol formaldehyde as binders, show that they are directly proportional to the mass of the sample and inversely proportional to the hear flux. Propellant weight-loss prior to ignition and high pressure ignition temperature data on the propellants, ammonium per chlorate, and binders show that the ignition is governed by the gasification of the binder pyrolysis products. The activation energy for the gasification of the pyrolysed polymer products corresponds to their ignition behaviour suggesting that propellant ignition is controlled by the binder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isothermal section of the phase diagram for the system NiO-MgO-SiO2 at 1373 K is established, The tie lines between (NiXMg1-X)O solid solution with rock salt structure and orthosilicate solid solution (NiYMg1-Y)Si0.5O2 and between orthosilicate and metasilicate (NiZMg1-Z)SiO3 crystalline solutions are determined using electron probe microanalysis (EPMA) and lattice parameter measurement on equilibrated samples, Although the monoxides and orthosilicates of Ni and Mg form a continuous range of solid solutions, the metasilicate phase exists only for 0 < Z < 0.096, The activity of NiO in the rock salt solid solution is determined as a function of composition and temperature in the range of 1023 to 1377 K using a solid state galvanic cell, The Gibbs energy of mixing of the monoxide solid solution can be expressed by a pseudo-subregular solution model: Delta G(ex) = X(1 - X)[(-2430 + 0.925T)X + (-5390 + 1.758T)(1 - X)] J/mol, The thermodynamic data for the rock salt phase are combined with information on interphase partitioning of Ni and Mg to generate the mixing properties for the orthosilicate and the metasilicate solid solutions, The regular solution model describes the orthosilicate and the metasilicate solid solutions at 1373 K within experimental uncertainties, The regular solution parameter Delta G(ex)/Y(1 - Y) is -820 (+/-70) J/mol for the orthosilicate solid solution, The corresponding value for the metasilicate solid solution is -220 (+/-150) J/mol, The derived activities for the orthosilicate solid solution are discussed in relation to the intracrystalline ion exchange equilibrium between M1 and M2 sites. The tie line information, in conjunction with the activity data for orthosilicate and metasilicate solid solutions, is used to calculate the Gibbs energy changes for the intercrystalline ion exchange reactions, Combining this with the known data for NiSi0.5O2, Gibbs energies of formation of MgSi0.5O2, MgSiO3, and metastable NiSiO3 are calculated, The Gibbs energy of formation of NiSiO3, from its component oxides, is equal to 7.67 (+/-0.6) kJ/mol at 1373 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Activities in the spinel solid solution FexMg1-xAl2O4 saturated with alpha-Al2O3 have been measured for the compositional range 0 < X < 1 between 1100 and 1350 K using a bielectrolyte solid-state galvanic cell, which may be represented as Pt, Fe + FexMg1-xAl2O4 + alpha-Al2O3//(Y2O3)ThO2/ (CaO)ZrO2//Fe + FeAl2O4 + alpha-Al2O3, Pt Activities of ferrous and magnesium aluminates exhibit small negative deviations from Raoult's law. The excess free energy of mixing of the solid solution is a symmetric function of composition and is independent of temperature: Delta G(E) = -1990 X(1 - X J/mol. Theoretical analysis of cation distribution in spinel solid solution also suggests mild negative deviations from ideality. The lattice parameter varies linearly with composition in samples quenched from 1300 K. Phase relations in the FeO-MgO-Al2O3 system at 1300 K are deduced from the results of this study and auxiliary thermodynamic data from the literature. The calculation demonstrates the influence of intracrystalline ion exchange equilibrium between nonequivalent crystallographic sites in the spinel structure on intercrystalline ion exchange equilibrium between the monoxide and spinel solid solutions (tie-lines). The composition dependence of oxygen partial pressure at 1300 K is evaluated for three-phase equilibria involving the solid solutions Fe + FexMg1-xAl2O4 + alpha-Al2O3 and Fe + FeyMg1-yO + FexMg1-xAl2O4. Dependence of X, denoting the composition of the spinel solid solution, on parameter Y, characterizing the composition of the monoxide solid solution with rock salt structure, in phase fields involving the two solid solutions is elucidated. The tie-lines are slightly skewed toward the MgAl2O4 corner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A newly developed and validated constitutive model that accounts for primary compression and time-dependent mechanical creep and biodegradation is used for parametric study to investigate the effects of model parameters on the predicted settlement of municipal solid waste (MSW) with time. The model enables the prediction of stress strain response and yield surfaces for three components of settlement: primary compression, mechanical creep, and biodegradation. The MSW parameters investigated include compression index, coefficient of earth pressure at-rest, overconsolidation ratio, and biodegradation parameters of MSW. A comparison of the predicted settlements for typical MSW landfill conditions showed significant differences in time-settlement response depending on the selected model input parameters. The effect of lift thickness of MSW on predicted settlement is also investigated. Overall, the study shows that the variation in the model parameters can lead to significantly different results; therefore, the model parameter values should be carefully selected to predict landfill settlements accurately. It is shown that the proposed model captures the time settlement response which is in general agreement with the results obtained from the other two reported models having similar features. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of dipolar couplings using separated local field (SLF) NMR experiment is a powerful tool for structural and dynamics studies of oriented molecules such as liquid crystals and membrane proteins in aligned lipid bilayers. Enhancing the sensitivity of such SLF techniques is of significant importance in present-day solid-state NMR methodology. The present study considers the use of adiabatic cross-polarization for this purpose, which is applied for the first time to one of the well-known SLF techniques, namely, polarization inversion spin exchange at the magic angle (PISEMA). The experiments have been carried out on a single crystal of a model peptide, and a dramatic enhancement in signal-to-noise up to 90% has been demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction of CH3OH with Cu clusters deposited on ZnO films grown on a Zn foil as well as on a ZnO(0001)Zn crystal, has been examined by X-ray photoelectron spectroscopy. On clean Cu clusters, reversible molecular adsorption or formation of CH3O is observed. However if the Cu clusters are pretreated with oxygen, both CH3O and HCOO- species are produced. Model Cu/ZnO catalyst surfaces, containing both Cu1+ and Cu-0 species, show interesting oxidation properties. On a Cu-0-rich catalyst surface, only CH3O species is formed on interaction with CH3OH. On a Cu1+-rich surface, however, HCOO- ion is the predominant species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the extended Hubbard model to investigate the properties of the charge- and spin-density-wave phases in the presence of a nearest-neighbors repulsion term in the framework of the slave-boson technique. We show that, contrary to Hartree-Fock results, an instablity may occur for sufficiently high values of the Hubbard repulsion, both in the spin- and charge-density-wave phase, which makes the system discontinuously jump to a phase with a smaller or zero wave amplitude. The limits of applicability of our approach are discussed and our results are compared with previous numerical analysis. The phase diagram of the model at half-filling is determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-phase thermodynamic (2PT) model is used to determine the absolute entropy and energy of carbon dioxide over a wide range of conditions from molecular dynamics trajectories. The 2PT method determines the thermodynamic properties by applying the proper statistical mechanical partition function to the normal modes of a fluid. The vibrational density of state (DoS), obtained from the Fourier transform of the velocity autocorrelation function, converges quickly, allowing the free energy, entropy, and other thermodynamic properties to be determined from short 20-ps MD trajectories. The anharmonic effects in the vibrations are accounted for by the broadening of the normal modes into bands from sampling the velocities over the trajectory. The low frequency diffusive modes, which lead to finite DoS at zero frequency, are accounted for by considering the DoS as a superposition of gas-phase and solid-phase components (two phases). The analytical decomposition of the DoS allows for an evaluation of properties contributed by different types of molecular motions. We show that this 2PT analysis leads to accurate predictions of entropy and energy of CO2 over a wide range of conditions (from the triple point to the critical point of both the vapor and the liquid phases along the saturation line). This allows the equation of state of CO2 to be determined, which is limited only by the accuracy of the force field. We also validated that the 2PT entropy agrees with that determined from thermodynamic integration, but 2PT requires only a fraction of the time. A complication for CO2 is that its equilibrium configuration is linear, which would have only two rotational modes, but during the dynamics it is never exactly linear, so that there is a third mode from rotational about the axis. In this work, we show how to treat such linear molecules in the 2PT framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the metal-insulator transition at integer fillings in a triply degenerate Hubbard model using the Lanczos method. The critical Coulomb interaction strength U-c, is found to depend strongly on the band filling, with U-c similar to root 3 W (W is the bandwidth) at half filling for this case with threefold degeneracy. We discuss the implications of our results on metal-insulator transitions in strongly correlated systems in general, and on the unusual electronic ground state of the alkali-metal-doped fullerenes, in particular. [S0163-1829(99)11003-8].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorine-35 NQR frequency and spin-lattice relaxation time measurements as a function of temperature in the range 77-300 K were carried out on 2-amino-3,5-dichloropyridine. Two NQR signals were observed and were assigned to the two chlorines present in the molecule using the additive model for substituent effects. The temperature dependence of the NQR frequency was analysed in terms of the torsional oscillations of the molecule and the torsional frequencies and their temperature dependence were calculated numerically using a two-mode approximation. The temperature dependence of the NQR spin-lattice relaxation time was found to be mainly due to the torsional oscillations of the molecule, with anharmonicity effects showing up at higher temperatures. Copyright (C) 1999 John Wiley & Sons, Ltd.