176 resultados para Isolated bound-state solution


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report the structure of a 1:1 charge transfer complex between pyridine (PYR) and chloranil (CHL) in solution (CHCl(3)) from the measurement of hyperpolarizability (beta(HRS)) and linear and circular depolarization ratios, D and D', respectively, by the hyper-Rayleigh scattering technique and state-of-the-art quantum chemical calculations. Using linearly (electric field vector along X) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D = I(X,X)(2 omega)/I(X,Z)(2 omega) and D' = I(X,C)(2 omega)/I(Z,C)(2 omega) in the laboratory fixed XYZ frame by detecting the second harmonic (SH) scattered light in a polarization resolved fashion. The stabilization energy and the optical gap calculated through the MP2/cc-pVDZ method using Gaussian09 were not significantly different to distinguish between the cofacial and T-shape structures. Only when the experimentally obtained beta(HRS) and the depolarization ratios, D and D', were matched with the theoretically computed values from single and double configuration interaction (SDCI) calculations performed using the ZINDO-SCRF technique, we concluded that the room temperature equilibrium structure of the complex is cofacial. This is in sharp contrast to an earlier theoretical prediction of the T-shape structure of the complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Al(1-x)Ga(x)N semiconductors are used in lighting, displays and high-power amplifiers, there is no experimental thermodynamic information on nitride solid solutions. Thermodynamic data are useful for assessing the intrinsic stability of the solid solution with respect to phase separation and extrinsic stability in relation to other phases such as metallic contacts. The activity of GaN in Al(1-x)Ga(x)N solid solution is determined at 1100 K using a solid-state electrochemical cell: Ga + Al(1-x)Ga(x)N/Fe, Ca(3)N(2)//CaF(2)//Ca(3)N(2), N(2) (0.1 MPa), Fe. The solid-state cell is based on single crystal CaF(2) as the electrolyte and Ca(3)N(2) as the auxiliary electrode to convert the nitrogen chemical potential established by the equilibrium between Ga and Al(1-x)Ga(x)N solid solution into an equivalent fluorine potential. Excess Gibbs free energy of mixing of the solid solution is computed from the results. Results suggest an unusual mixing behavior: a mild tendency for ordering at three discrete compositions (x = 0.25, 0.5 and 0.75) superimposed on predominantly positive deviation from ideality. The lattice parameters exhibit slight deviation from Vegard's law, with the a-parameter showing positive and the c-parameter negative deviation. Although the solid solution is stable in the full range of compositions at growth temperatures, thermodynamic instability is indicated at temperatures below 410 K in the composition range 0.26 <= x <= 0.5. At 355 K, two biphasic regions appear, with terminal solid solutions stable only for 0 <= x <= 0.26 and 0.66 <= x <= 1. The range of terminal solid solubility reduces with decreasing temperature. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boronic acid (pS)-1,2-NpFcB(OH)(2) (1) was obtained by treatment of the lithiated species (pS)-1,2-NpFcLi with B(O(i)Pr)(3), followed by acidic workup; subsequent dehydration gave the enantiomerically pure boroxine [(pS)-1,2-NpFcBO](3) (2) in 49% isolated yield. Multinuclear and 2D NMR spectroscopies, single-crystal X-ray diffraction, and elemental analysis served to confirm the structure of 2. In the solid-state structure, all three of the naphthyl groups point in one direction and all of the ferrocenyl moieties are placed on the opposite face of the boroxine ring, which is also the preferred conformation in solution according to a (1)H, (1)H-NOESY experiment. Cyclic voltammetry revealed three separate reversible oxidation events, which suggests significant communication between the ferrocenyl moieties. These redox processes experience a cathodic shift upon addition of 4-dimethylaminopyridine (DMAP) as a Lewis base. The six-membered ring is opened upon treatment with hot CHCl(3)/MeOH to form the methoxy species (pS)-1,2-NpFcB(OH)(OMe) (3), which can be converted back to the cycle 2 by dissolution in wet CHCl(3), followed by column chromatography on silica gel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[(eta(6)-C(10)H(14))RuCl(mu-Cl)](2) (eta(6)-C(10)H(14) = eta(6)-p-cymene) was subjected to a bridge-splitting reaction with N,N',N `'-triarylguanidines, (ArNH)(2)C=NAr, in toluene at ambient temperature to afford [(eta(6)-C(10)H(14))RuCl{kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (1), C(6)H(4)(OMe)-2 (2), C(6)H(4)Me-2 (3), and C(6)H(3)Me(2)-2,4 (4)) in high yield with a view aimed at understanding the influence of substituent(s) on the aryl rings of the guanidine upon the solid-state structure, solution behavior, and reactivity pattern of the products. Complexes 1-3 upon reaction with NaN(3) in ethanol at ambient temperature afforded [(eta(6)-C(10)H(14))RuN(3){kappa(2)(N,N')((ArN)(2)C-N(H)Ar)}] (Ar = C(6)H(4)Me-4 (5), C(6)H(4)(OMe)-2 (6), and C(6)H(4)Me-2 (7)) in high yield. [3 + 2] cycloaddition reaction of 5-7 with RO(O)C-C C-C(O)OR (R = Et (DEAD) and Me (DMAD)) (diethylacetylenedicarboxylate, DEAD; dimethylacetylenedicarboxylate, DMAD) in CH(2)Cl(2) at ambient temperature afforded [(eta(6)-C(10)H(14))Ru{N(3)C(2)(C(O)OR)(2)}{kappa(2)(N,N')((ArN)(2) C-N(H)Ar)}center dot xH(2)O (x = 1, R = Et, Ar = C(6)H(4)Me-4 (8 center dot H(2)O); x = 0, R = Me, Ar = C(6)H(4)(OMe)-2 (9), and C(6)H(4)Me-2 (10)) in moderate yield. The molecular structures of 1-6, 8 center dot H(2)O, and 10 were determined by single crystal X-ray diffraction data. The ruthenium atom in the aforementioned complexes revealed pseudo octahedral ``three legged piano stool'' geometry. The guanidinate ligand in 2, 3, and 6 revealed syn-syn conformation and that in 4, and 10 revealed syn-anti conformation, and the conformational difference was rationalized on the basis of subtle differences in the stereochemistry of the coordinated nitrogen atoms caused by the aryl moiety in 3 and 4 or steric overload caused by the substituents around the ruthenium atom in 10. The bonding pattern of the CN(3) unit of the guanidinate ligand in the new complexes was explained by invoking n-pi conjugation involving the interaction of the NHAr/N(coord)Ar lone pair with C=N pi* orbital of the imine unit. Complexes 1, 2, 5, 6, 8 center dot H(2)O, and 9 were shown to exist as a single isomer in solution as revealed by NMR data, and this was ascribed to a fast C-N(H)Ar bond rotation caused by a less bulky aryl moiety in these complexes. In contrast, 3 and 10 were shown to exist as a mixture of three and five isomers in about 1:1:1 and 1.0:1.2:2:7:3.5:6.9 ratios, respectively in solution as revealed by a VT (1)H NMR, (1)H-(1)H COSY in conjunction with DEPT-90 (13)C NMR data measured at 233 K in the case of 3. The multiple number of isomers in solution was ascribed to the restricted C-N(H)(o-tolyl) bond rotation caused by the bulky o-tolyl substituent in 3 or the aforementioned restricted C-NH(o-tolyl) bond rotation as well as the restricted ruthenium-arene(centroid) bond rotation caused by the substituents around the ruthenium atom in 10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The W, V, Ce, Zr, Fe, and Cu metal ion substituted nanocrystalline anatase TiO2 was prepared by solution combustion method and characterized by XRD, Raman, BET, EPR, XPS, IR TGA, UV absorption, and photoluminescence measurements. The structural studies indicate that the solid solution formation was limited to a narrow range of concentrations of the dopant ions. The photocatalytic degradation of 4-nitrophenol under UV and solar exposure was investigated with Ti1-xMxO2±δ. The degradation rates of 4-nitrophenol with these catalysts were lesser than the degradation rates of 4-nitrophenol with undoped TiO2 both with UV exposure and solar radiation. However, the photocatalytic activities of most metal ion doped TiO2 are higher than the activity of the commercial TiO2, Degussa P25. The decrease in photocatalytic activity is correlated with decrease in photoluminescence due to electron states of metal ions within the band gap of TiO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric power utilities are installing distribution automation systems (DAS) for better management and control of the distribution networks during the recent past. The success of DAS, largely depends on the availability of reliable database of the control centre and thus requires an efficient state estimation (SE) solution technique. This paper presents an efficient and robust three-phase SE algorithm for application to radial distribution networks. This method exploits the radial nature of the network and uses forward and backward propagation scheme to estimate the line flows, node voltage and loads at each node, based on the measured quantities. The SE cannot be executed without adequate number of measurements. The extension of the method to the network observability analysis and bad data detection is also discussed. The proposed method has been tested to analyze several practical distribution networks of various voltage levels and also having high R:X ratio of lines. The results for a typical network are presented for illustration purposes. © 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new approach for solving the state estimation problem. The approach is aimed at producing a robust estimator that rejects bad data, even if they are associated with leverage-point measurements. This is achieved by solving a sequence of Linear Programming (LP) problems. Optimization is carried via a new algorithm which is a combination of “upper bound optimization technique" and “an improved algorithm for discrete linear approximation". In this formulation of the LP problem, in addition to the constraints corresponding to the measurement set, constraints corresponding to bounds of state variables are also involved, which enables the LP problem more efficient in rejecting bad data, even if they are associated with leverage-point measurements. Results of the proposed estimator on IEEE 39-bus system and a 24-bus EHV equivalent system of the southern Indian grid are presented for illustrative purpose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by the viscosity bound in gauge/gravity duality, we consider the ratio of shear viscosity (eta) to entropy density (s) in black hole accretion flows. We use both an ideal gas equation of state and the QCD equation of state obtained from lattice for the fluid accreting onto a Kerr black hole. The QCD equation of state is considered since the temperature of accreting matter is expected to approach 10(12) K in certain hot flows. We find that in both the cases eta/s is small only for primordial black holes and several orders of magnitude larger than any known fluid for stellar and supermassive black holes. We show that a lower bound on the mass of primordial black holes leads to a lower bound on eta/s and vice versa. Finally we speculate that the Shakura-Sunyaev viscosity parameter should decrease with increasing density and/or temperatures. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved ``physiological functions'' are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient ``iron storage protein,'' thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dielectric dispersion and NMRD experiments have revealed that a significant fraction of water molecules in the hydration shell of various proteins do not exhibit any slowing down of dynamics. This is usually attributed to the presence of the hydrophobic residues (HBR) on the surface, although HBRs alone cannot account for the large amplitude of the fast component. Solvation dynamics experiments and also computer simulation studies, on the other hand, repeatedly observed the presence of a non-negligible slow component. Here we show, by considering three well-known proteins (lysozyme, myoglobin and adelynate kinase), that the fast component arises partly from the response of those water molecules that are hydrogen bonded with the backbone oxygen (BBO) atoms. These are structurally and energetically less stable than those with the side chain oxygen (SCO) atoms. In addition, the electrostatic interaction energy distribution (EIED) of individual water molecules (hydrogen bonded to SCO) with side chain oxygen atoms shows a surprising two peak character with the lower energy peak almost coincident with the energy distribution of water hydrogen bonded to backbone oxygen atoms (BBO). This two peak contribution appears to be quite general as we find it for lysozyme, myoglobin and adenylate kinase (ADK). The sharp peak of EIED at small energy (at less than 2 k(B)T) for the BBO atoms, together with the first peak of EIED of SCO and the HBRs on the protein surface, explain why a large fraction (similar to 80%) of water in the protein hydration layer remains almost as mobile as bulk water Significant slowness arises only from the hydrogen bonds that populate the second peak of EIED at larger energy (at about 4 k(B)T). Thus, if we consider hydrogen bond interaction alone, only 15-20% of water molecules in the protein hydration layer can exhibit slow dynamics, resulting in an average relaxation time of about 5-10 ps. The latter estimate assumes a time constant of 20-100 ps for the slow component. Interestingly, relaxation of water molecules hydrogen bonded to back bone oxygen exhibit an initial component faster than the bulk, suggesting that hydrogen bonding of these water molecules remains frustrated. This explanation of the heterogeneous and non-exponential dynamics of water in the hydration layer is quantitatively consistent with all the available experimental results, and provides unification among diverse features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new solution processable quinoxaline based donor-acceptor-donor (D-A-D) type molecules have been synthesized for application in field effect transistors. These molecules were characterized by UV-visible spectroscopy, thermal gravimetric analysis, differential scanning calorimetry and cyclic voltammetry. DFT calculation gives deeper insight into the electronic structure of these molecules. The crystallinity and morphology features of thin film were investigated using X-ray diffraction. These molecules show liquid crystalline phase confirmed by DSC and optical polarizing microscopy. Investigation of their field effect transistor performance indicated that these molecules exhibited p-type mobility up to 9.7 x 10 (4) cm(2) V (1) s (1) and on/off ratio of 10(4). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new solution processable, low band gap donor-acceptor (D-A) copolymers (P1 and P2) comprising a cyclopentac] thiophene (CPT) based oligomers as donors and benzoc]1,2,5] selenadiazole (BDS) and 2-dodecyl1,2,3]-benzotriazole (BTAz) as acceptors were synthesized and characterized and their field effect transistor properties were studied. The internal charge transfer interaction between the electron-donating CPT based oligothiophene and the electron-accepting BDS or BTAz unit effectively reduces the band gap in polymers to 1.3 and 1.66 eV with low lying highest occupied molecular orbital (HOMO). The absorption spectrum of P1 was found to be more red shifted than that of P2 because of incorporation of the more electron-withdrawing BDS unit. The color of neutral P1 was found to be green in both solution and film states with two major bands in the absorption spectra; however, neutral P2 revealed one dominant absorption exhibiting red color in both solution and film state which could be attributed to the less electron-withdrawing effect of the BTAz unit. The polymers were further characterized by GPC, TGA, DSC and cyclic voltammetry. P1 and P2 exhibited charge carrier mobilities as high as 9 x 10(-3) cm(2) V-1 s(-1) and 2.56 x 10(-3) cm 2 V-1 s(-1), respectively with the current on/off ratio (I-on/I-off) in the order of 10(2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano sized copper chromite, which is used as a burn rate accelerator for solid propellants, was synthesized by the solution combustion process using citric acid and glycine as fuel. Pure spinel phase copper chromite (CuCr2O4) was synthesized, and the effect of different ratios of Cu-Cr ions in the initial reactant and various calcination temperatures on the final properties of the material were examined. The reaction time for the synthesis with glycine was lower compared to that with citric acid. The synthesized samples from both fuel cycles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis, and scanning electron microscope (SEM). Commercial copper chromite that is currently used in solid propellant formulation was also characterized by the same techniques. XRD analysis shows that the pure spinel phase compound is formed by calcination at 700 degrees C for glycine fuel cycle and between 750 and 800 degrees C for citric acid cycle. XPS results indicate the variation of the oxidation state of copper in the final compound with a change in the Cu-Cr mole ratio. SEM images confirm the formation of nano size spherical shape particles. The variation of BET surface area with calcination temperature was studied for the solution combusted catalyst. Burn rate evaluation of synthesized catalyst was carried out and compared with the commercial catalyst. The comparison between BET surface area and the burn rate depicts that surface area difference caused the variation in burn rate between samples. The reason behind the reduction in surface area and the required modifications in the process are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nano-ceramic phosphor CaSiO 3 doped with Pb and Mn was synthesized by the low temperature solution combustion method. The materials were characterized by Powder X-Ray Diffraction (XRD), Thermo-gravimetric and Differential Thermal Analysis (TG-DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The Electron Paramagnetic Resonance (EPR) spectrum of the investigated sample exhibits a broad resonance signal centered at g=1.994. The number of spins participating in resonance (N) and its paramagnetic susceptibility (�) have been evaluated. Photoluminescence of doped CaSiO 3 was investigated when excited by UV radiation of 256 nm. The phosphor exhibits an emission peak at 353 nm in the UV range due to Pb 2+. Further, a broad emission peak in the visible range 550-625 nm can be attributed to 4T 1� 6A 1 transition of Mn 2+ ions. The investigation reveals that doping perovskite nano-ceramics with transition metal ions leads to excellent phosphor materials for potential applications. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lattice oxygen of TiO2 is activated by the substitution of Pd ion in its lattice. Ti1-xPdxO2-x (x = 0.01-0.03) have been synthesized by solution combustion method crystallizing in anatase TiO2 structure. Pd is in +2 oxidation state and Ti is in +4 oxidation state in the catalyst. Pd is more ionic in TiO2 lattice compared to Pd in PdO. Oxygen storage capacity defined by ``amount of oxygen that is used reversibly to oxidize CO'' is as high as 5100 mu mol/g of Ti0.97Pd0.03O1.97. Oxygen is extracted by CO to CO2 in absence of feed oxygen even at room temperature which is more than 20 times compared to pure TiO2. Rate of CO oxidation is 2.75 mu mol g(-1) s(-1) at 60 degrees C over Ti0.97Pd0.03O1.97 and C2H2 gets oxidized to CO2 and H2O at room temperature. Catalyst is not poisoned on long time operation of the reactor. Such high catalytic activity is due to activated lattice oxygen created by the substitution of Pd ion as seen from first-principles density functional theory (DFT) calculations with 96 atom supercells of Ti32O64, Ti31Pd1O63, Ti30Pd2O62, and Ti29Pd3O61. The compounds crystallize in anatase TiO2 structure with Pd2+ ion in nearly square planar geometry and TiO6 octahedra are distorted by the creation of weakly bound oxygens. Structural analysis of Ti31Pd1O63 which is close to 3% Pd ion substituted TiO2 shows that oxygens associated with both Ti and Pd ions in the lattice show bond valence sum of 1.87, a low value characteristic of weak oxygen in the lattice compared to oxygens with valence 2 and above in the same lattice. Exact positions of activated oxygens have been identified in the lattice from DFT calculations.