337 resultados para Infinite Horizon
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.
Resumo:
The breakdown of the usual method of Fourier transforms in the problem of an external line crack in a thin infinite elastic plate is discovered and the correct solution of this problem is derived using the concept of a generalised Fourier transform of a type discussed first by Golecki [1] in connection with Flamant's problem.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.
Resumo:
The rail-sleeper system is idealized as an infinite, periodic beam-mass system. Use is made of the periodicity principle for the semi-infinite halves on either side of the forcing point for evaluation of the wave propagation constants and the corresponding modal vectors. It is shown that the spread of acceleration away from the forcing point depends primarily upon one of the wave propagation constants. However, all the four modal vectors (two for the left-hand side and two for the right-hand side) determine the driving point impedance of the rail-sleeper system, which in combination with the driving point impedance of the wheel (which is adopted from the preceding companion paper) determines the forces generated by combined surface roughness and the resultant accelerations. The compound one-third octave acceleration levels generated by typical roughness spectra are generally of the same order as the observed levels.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.
Resumo:
The recently developed single network adaptive critic (SNAC) design has been used in this study to design a power system stabiliser (PSS) for enhancing the small-signal stability of power systems over a wide range of operating conditions. PSS design is formulated as a discrete non-linear quadratic regulator problem. SNAC is then used to solve the resulting discrete-time optimal control problem. SNAC uses only a single critic neural network instead of the action-critic dual network architecture of typical adaptive critic designs. SNAC eliminates the iterative training loops between the action and critic networks and greatly simplifies the training procedure. The performance of the proposed PSS has been tested on a single machine infinite bus test system for various system and loading conditions. The proposed stabiliser, which is relatively easier to synthesise, consistently outperformed stabilisers based on conventional lead-lag and linear quadratic regulator designs.
Resumo:
Ultrasonic velocities in aqueous solutions of some metal acetates, monochloroacelates and trichloroacetates, and the respective acids have been measured at 1 MHz frequency using the pulse technique. The ultrsonic velocity, adiabatic compressibility and apperent molal compressibility were measured as a function of concentration. The apparent molal compressibility values at infinite dilution were calculated and used to determine the hydration numbers.
Resumo:
The behaviour of the slotted ALOHA satellite channel with a finite buffer at each of the user terminals is studied. Approximate relationships between the queuing delay, overflow probabilities and buffer size are derived as functions of the system input parameters (i.e. the number of users, the traffic intensity, the transmission and the retransmission probabilities) for two cases found in the literature: the symmetric case (same transmission and retransmission probabilities), and the asymmetric case (transmission probability far greater than the retransmission probability). For comparison, the channel performance with an infinite buffer is also derived. Additionally, the stability condition for the system is defined in the latter case. The analysis carried out in the paper reveals that the queuing delays are quite significant, especially under high traffic conditions.
Resumo:
Using inhomogeneous dynamical mean-field theory, we show that the normal-metal proximity effect could force any finite number of Mott-insulating "barrier" planes sandwiched between semi-infinite metallic leads to become "fragile" Fermi liquids. They are fully Fermi-liquid-like at T=0, leading to a restoration of lattice periodicity at zero frequency, with a well-defined Fermi surface, and perfect (ballistic) conductivity. However, the Fermi-liquid character can rapidly disappear at finite omega, V, T, disorder, or magnetism, all of which restore the expected quantum tunneling regime, leading to fascinating possibilities for nonlinear response in devices.
Similar solutions for the incompressible laminar boundary layer with pressure gradient in micropolar
Resumo:
This paper presents the similarity solution for the steady incompressible laminar boundary layer flow of a micropolar fluid past an infinite wedge. The governing equations have been solved numerically using fourth orderRunge-Kutta-Gill method. The results indicate the extent to which the velocity and microrotation profiles, and the surface shear stress are influenced by coupling, microrotation, and pressure gradient parameters. The important role played by the standard length of the micropolar fluid in determining the structure of the boundary layer has also been discussed.
Time-dependent flows of rotating and stratified fluids in geometries with non-uniform cross-sections
Resumo:
Unsteady rotating and stratified flows in geometries with non-uniform cross-sections are investigated under Oseen approximation using Laplace transform technique. The solutions are obtained in closed form and they reveal that the flow remains oscillatory even after infinitely large time. The existence of inertial waves propagating in both positive and negative directions of the flow is observed. When the Rossby or Froude number is close to a certain infinite set of critical values the blocking and back flow occur and the flow pattern becomes more and more complicated with increasing number of stagnant zones when each critical value is crossed. The analogy that is observed in the solutions for rotating and stratified flows is also discussed.
Resumo:
The unsteady laminar compressible boundary-layer flow in the immediate vicinity of a two-dimensional stagnation point due to an incident stream whose velocity varies arbitrarily with time is considered. The governing partial differential equations, involving both time and the independent similarity variable, are transformed into new co-ordinates with finite ranges by means of a transformation which maps an infinite interval into a finite one. The resulting equations are solved by converting them into a matrix equation through the application of implicit finite-difference formulae. Computations have been carried out for two particular unsteady free-stream velocity distributions: (1) a constantly accelerating stream and (2) a fluctuating stream. The results show that in the former case both the skin-friction and the heat-transfer parameter increase steadily with time after a certain instant, while in the latter they oscillate thus responding to the fluctuations in the free-stream velocity.
Resumo:
An exact solution for the stresses in a transversely isotropic infinite thick plate having a circular hole and subjected to axisymmetric uniformly distributed load on the plane surfaces has been given. The solution is in the form of Fourier-Bessel series and integrals. Numerical results for the stresses are given using the elastic constants for magnesium, and are compared with the isotropic case.