164 resultados para Gaussian Fields
Resumo:
Medical image segmentation finds application in computer-aided diagnosis, computer-guided surgery, measuring tissue volumes, locating tumors, and pathologies. One approach to segmentation is to use active contours or snakes. Active contours start from an initialization (often manually specified) and are guided by image-dependent forces to the object boundary. Snakes may also be guided by gradient vector fields associated with an image. The first main result in this direction is that of Xu and Prince, who proposed the notion of gradient vector flow (GVF), which is computed iteratively. We propose a new formalism to compute the vector flow based on the notion of bilateral filtering of the gradient field associated with the edge map - we refer to it as the bilateral vector flow (BVF). The range kernel definition that we employ is different from the one employed in the standard Gaussian bilateral filter. The advantage of the BVF formalism is that smooth gradient vector flow fields with enhanced edge information can be computed noniteratively. The quality of image segmentation turned out to be on par with that obtained using the GVF and in some cases better than the GVF.
Resumo:
We study the phenomenon of electromagnetically induced transparency and absorption (EITA) using a control laser with a Laguerre-Gaussian (LG) profile instead of the usual Gaussian profile, and observe significant narrowing of the resonance widths. Aligning the probe beam to the central hole in the doughnut-shaped LG control beam allows simultaneously a strong control intensity required for high signal-to-noise ratio and a low intensity in the probe region required to get narrow resonances. Experiments with an expanded Gaussian control and a second-order LG control show that transit time and orbital angular momentum do not play a significant role. This explanation is borne out by a density-matrix analysis with a radially varying control Rabi frequency. We observe these resonances using degenerate two-level transitions in the D-2 line of Rb-87 in a room temperature vapor cell, and an EIA resonance with width up to 20 times below the natural linewidth for the F = 2 -> F' = 3 transition. Thus the use of LG beams should prove advantageous in all applications of EITA and other kinds of pump-probe spectroscopy as well.
Resumo:
We consider bounds for the capacity region of the Gaussian X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. We first classify the XC into two classes, the strong XC and the mixed XC. In the strong XC, either the direct channels are stronger than the cross channels or vice-versa, whereas in the mixed XC, one of the direct channels is stronger than the corresponding cross channel and vice-versa. After this classification, we give outer bounds on the capacity region for each of the two classes. This is based on the idea that when one of the messages is eliminated from the XC, the rate region of the remaining three messages are enlarged. We make use of the Z channel, a system obtained by eliminating one message and its corresponding channel from the X channel, to bound the rate region of the remaining messages. The outer bound to the rate region of the remaining messages defines a subspace in R-+(4) and forms an outer bound to the capacity region of the XC. Thus, the outer bound to the capacity region of the XC is obtained as the intersection of the outer bounds to the four combinations of the rate triplets of the XC. Using these outer bounds on the capacity region of the XC, we derive new sum-rate outer bounds for both strong and mixed Gaussian XCs and compare them with those existing in literature. We show that the sum-rate outer bound for strong XC gives the sum-rate capacity in three out of the four sub-regions of the strong Gaussian XC capacity region. In case of mixed Gaussian XC, we recover the recent results in 11] which showed that the sum-rate capacity is achieved in two out of the three sub-regions of the mixed XC capacity region and give a simple alternate proof of the same.
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed.
Resumo:
Recent experiments on fermions in synthetic gauge fields result in systems with a spin-orbit coupling along one spatial axis, a detuning field, and a Zeeman field. We show theoretically that the presence of all three results in interesting and unusual phenomena in a system of interacting fermions (interactions described by a scattering length). For two fermions, bound states appear only over a certain range of the center-of-mass momenta. The deepest bound state appears at a nonzero center-of-mass momentum. For center-of-mass momenta without a bound state, the gauge field induces a resonance-like feature in the scattering continuum resulting in a large scattering phase shift. In the case of many particles, we demonstrate that the system, in a parameter range, shows flow-enhanced pairing, i.e., a Fulde-Farrell-Larkin-Ovchnnikov superfluid state made of robust pairs with a finite center-of-mass momentum. Yet another regime of parameters offers the opportunity to study strongly interacting normal states of spin-orbit-coupled fermionic systems utilizing the resonance-like feature induced by the synthetic gauge field.
Resumo:
The motion of DNA (in the bulk solution) and the non-Newtonian effective fluid behavior are considered separately and self-consistently with the fluid motion satisfying the no-slip boundary condition on the surface of the confining geometry in the presence of channel pressure gradients. A different approach has been developed to model DNA in the micro-channel. In this study the DNA is assumed as an elastic chain with its characteristic Young's modulus, Poisson's ratio and density. The force which results from the fluid dynamic pressure, viscous forces and electromotive forces is applied to the elastic chain in a coupled manner. The velocity fields in the micro-channel are influenced by the transport properties. Simulations are carried out for the DNAs attached to the micro-fluidic wall. Numerical solutions based on a coupled multiphysics finite element scheme are presented. The modeling scheme is derived based on mass conservation including biomolecular mass, momentum balance including stress due to Coulomb force field and DNA-fluid interaction, and charge transport associated to DNA and other ionic complexes in the fluid. Variation in the velocity field for the non-Newtonian flow and the deformation of the DNA strand which results from the fluid-structure interaction are first studied considering a single DNA strand. Motion of the effective center of mass is analyzed considering various straight and coil geometries. Effects of DNA statistical parameters (geometry and spatial distribution of DNAs along the channel) on the effective flow behavior are analyzed. In particular, the dynamics of different DNA physical properties such as radius of gyration, end-to-end length etc. which are obtained from various different models (Kratky-Porod, Gaussian bead-spring etc.) are correlated to the nature of interaction and physical properties under the same background fluid environment.
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed. (C) 2013 AIP Publishing LLC.
Resumo:
This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.
Resumo:
Let F be a non-archimedean local field and let O be its ring of integers. We give a complete description of the irreducible constituents of the restriction of the unramified principal series representations of GL(3)(F) to GL(3)(O). (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
In this paper, a nonlinear suboptimal detector whose performance in heavy-tailed noise is significantly better than that of the matched filter is proposed. The detector consists of a nonlinear wavelet denoising filter to enhance the signal-to-noise ratio, followed by a replica correlator. Performance of the detector is investigated through an asymptotic theoretical analysis as well as Monte Carlo simulations. The proposed detector offers the following advantages over the optimal (in the Neyman-Pearson sense) detector: it is easier to implement, and it is more robust with respect to error in modeling the probability distribution of noise.
Resumo:
Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We consider a Gaussian multiple access channel (GMAC) where the users are sensor nodes powered by energy harvesters. The energy harvesters may have finite or infinite buffer to store the harvested energy. First, we find the capacity region of a GMAC powered by transmit nodes with an infinite energy buffer. Next, we consider a GMAC with the transmitting nodes equipped with a finite energy buffer. Initially we assume perfect knowledge of the buffer state information at both the encoders and the decoder. We provide an achievable region for this case. We also generalize the achievable region when only partial information about buffer state is available at both the encoders and the decoder.
Achievable rate region of gaussian broadcast channel with finite input alphabet and quantized output
Resumo:
In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.