152 resultados para Frequency-dependent parameters
Resumo:
The classical approach to A/D conversion has been uniform sampling and we get perfect reconstruction for bandlimited signals by satisfying the Nyquist Sampling Theorem. We propose a non-uniform sampling scheme based on level crossing (LC) time information. We show stable reconstruction of bandpass signals with correct scale factor and hence a unique reconstruction from only the non-uniform time information. For reconstruction from the level crossings we make use of the sparse reconstruction based optimization by constraining the bandpass signal to be sparse in its frequency content. While overdetermined system of equations is resorted to in the literature we use an undetermined approach along with sparse reconstruction formulation. We could get a reconstruction SNR > 20dB and perfect support recovery with probability close to 1, in noise-less case and with lower probability in the noisy case. Random picking of LC from different levels over the same limited signal duration and for the same length of information, is seen to be advantageous for reconstruction.
Resumo:
A modification of the jogged-screw model has been adopted recently by the authors to explain observations of 1/2[110]-type jogged-screw dislocations in equiaxed Ti-48Al under creep conditions. The aim of this study has been to verify and validate the parameters and functional dependencies that have been assumed in this previous work. The original solution has been reformulated to take into account the finite length of the moving jog. This is a better approximation of the tall jog. The substructural model parameters have been further investigated in light of the Finite Length Moving Line (FLML) source approximation. The original model assumes that the critical jog height (beyond which the jog is not dragged) is inversely proportional to the applied stress. By accounting for the fact that there are three competing mechanisms (jog dragging, dipole dragging, dipole bypass) possible, we can arrive at a modified critical jog height. The critical jog height was found to be more strongly stress dependent than assumed previously. The original model assumes the jog spacing to be invariant over the stress range. However, dynamic simulation using a line tension model has shown that the jog spacing is inversely proportional to the applied stress. This has also been confirmed by TEM measurements of jog spacings over a range of stresses. Taylor's expression assumed previously to provide the dependence of dislocation density on the applied stress, has now been confirmed by actual dislocation density measurements. Combining all of these parameters and dependencies, derived both from experiment and theory, leads to an excellent prediction of creep rates and stress exponents. The further application of this model to other materials, and the important role of atomistic and dislocation dynamics simulations in its continued development is also discussed.
Resumo:
We determine the nature of coupled phonons in mixed crystal of Cs-0.9(NH4)(0.1)H2AsO4 using inelastic light scattering studies in the temperature range of 5 K to 300 K covering a spectral range of 60-1100 cm(-1). The phase transition in this system are marked by the splitting of phonon modes, appearance of new modes and anomalies in the frequency as well as linewidth of the phonon modes near transition temperature. In particular, we observed the splitting of symmetric (v(1)) and antisymmetric (v(3)) stretching vibrations associated with AsO4 tetrahedra below transition temperature (T-c(*) similar to 110 K) attributed to the lowering of site symmetry of AsO4 in orthorhombic phase below transition temperature. In addition, the step-up (hardening) and step-down (softening) of the AsO4 bending vibrations (v(4) (S9, S11) and v(2) (S6)) below transition temperature signals the rapid development of long range ferroelectric order and proton ordering. The lowest frequency phonon (S1) mode observed at similar to 92 cm(-1) shows anomalous blue shift (similar to 12 %) from 300 K to 5 K with no sharp transition near T-c(*) unlike other observed phonon modes signaling its potential coupling with the proton tunneling mode. (C) 2013 Author(s).
Resumo:
We consider wavenumbers in in vacuo and fluid-filled isotropic and orthotropic shells. Using the Donnell-Mushtari (DM) theory we find compact and elegant asymptotic expansions for the wavenumbers in the intermediate frequency range, i.e., around the ring frequency. This frequency range corresponds to the frequencies where there is a rapid change in the values of bending wavenumbers and is found to exist in isotropic and orthotropic shells (in vacua and fluid-filled) for low circumferential orders n only. The same is first identified using the n=0 mode of an orthotropic shell. Following this, using the expression for the intermediate frequency, asymptotic expansions are found for other cases. Here, in order to get compact expansions we consider slight orthotropy (epsilon << 1) and light fluid loading (mu << 1). Thus, the orthotropy parameter epsilon and the fluid loading parameter mu are used as asymptotic parameters along with the non-dimensional thickness parameter beta. The methodology can be extended to any order of epsilon, only the expansions become unwieldy. The expansions are matched with the numerical solutions of the corresponding dispersion relation. The match is found to be good.
Resumo:
Thermoacoustics is the interaction between heat and sound, which are useful in designing heat engines and heat pumps. Research in the field of thermoacoustics focuses on the demand to improve the performance which is achieved by altering operational, geometrical and fluid parameters. The present study deals with improving the performance of twin thermoacoustic prime mover, which has gained the significant importance in the recent years for the production of high amplitude sound waves. The performance of twin thermoacoustic prime mover is evaluated in terms of onset temperature difference, resonance frequency and pressure amplitude of the acoustic waves by varying the resonator length and charge pressures of fluid medium nitrogen. DeltaEC, the free simulation software developed by LANL, USA is employed in the present study to simulate the performance of twin thermoacoustic prime mover. Experimental and simulated results are compared and the deviation is found to be within 10%.
Resumo:
One of the different issues limiting the wider application of monolithic hydroxyapatite (HA) as an ideal bone replacement material is the lack of reasonably good electrical transport properties. The comprehensive electrical property characterization to evaluate the efficacy of processing parameters in achieving the desired combination of electroactive properties is considered as an important aspect in the development of HA-based bioactive material. In this perspective, the present work reports the temperature (RT-200 degrees C) and frequency (100 Hz-1 MHz) dependent dielectric properties and AC conductivity for a range of HA-CaTiO3 (HA-CT) composites, densified using both conventional pressureless sintering in air as well as spark plasma sintering in vacuum. Importantly, the AC conductivity of spark plasma sintered ceramics similar to upto 10(-5) (Omega cm)(-1)] are found to be considerably higher than the corresponding pressureless sintered ceramics similar to upto 10(-8) (Omega cm)(-1)]. Overall, the results indicate the processing route dependent functional properties of HA-CaTiO3 composites as well as related advantages of spark plasma sintering route. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
In this paper, a current error space vector (CESV)-based hysteresis current controller for a multilevel 12-sided voltage space vector-based inverter-fed induction motor (IM) drive is proposed. The proposed controller gives a nearly constant switching frequency operation throughout different speeds in the linear modulation region. It achieves the elimination of 6n +/- 1, n = odd harmonics from the phase voltages and currents in the entire modulation range, with an increase in the linear modulation range. It also exhibits fast dynamic behavior under different transient conditions and has a simple controller implementation. Nearly constant switching frequency is obtained by matching the steady-state CESV boundaries of the proposed controller with that of a constant switching frequency SVPWM-based drive. In the proposed controller, the CESV reference boundaries are computed online, using the switching dwell time and voltage error vector of each applied vector. These quantities are calculated from estimated sampled reference phase voltages. Vector change is decided by projecting the actual current error along the computed hysteresis space vector boundary of the presently applied vector. The estimated reference phase voltages are found from the stator current error ripple and the parameters of the IM.
Resumo:
Patches with variants of fractal Minkowski curves as boundaries are used here to design a polarization dependent electromagnetic bandgap surface. Reflection phases of the proposed structure depends upon the polarization state of the incident wave and frequency. The phase difference between the x-polarized and y-polarized components of the reflected wave can be as high as 200 degrees and this is achieved without excessive increase in unit cell dimensions and vias. The performance of the surface is analyzed numerically using CST microwave studio. The potential applications of the surface are in polarization conversion surfaces, polarimetric radar calibration, and RCS reduction.
Resumo:
Estimation of design quantiles of hydrometeorological variables at critical locations in river basins is necessary for hydrological applications. To arrive at reliable estimates for locations (sites) where no or limited records are available, various regional frequency analysis (RFA) procedures have been developed over the past five decades. The most widely used procedure is based on index-flood approach and L-moments. It assumes that values of scale and shape parameters of frequency distribution are identical across all the sites in a homogeneous region. In real-world scenario, this assumption may not be valid even if a region is statistically homogeneous. To address this issue, a novel mathematical approach is proposed. It involves (i) identification of an appropriate frequency distribution to fit the random variable being analyzed for homogeneous region, (ii) use of a proposed transformation mechanism to map observations of the variable from original space to a dimensionless space where the form of distribution does not change, and variation in values of its parameters is minimal across sites, (iii) construction of a growth curve in the dimensionless space, and (iv) mapping the curve to the original space for the target site by applying inverse transformation to arrive at required quantile(s) for the site. Effectiveness of the proposed approach (PA) in predicting quantiles for ungauged sites is demonstrated through Monte Carlo simulation experiments considering five frequency distributions that are widely used in RFA, and by case study on watersheds in conterminous United States. Results indicate that the PA outperforms methods based on index-flood approach.
Resumo:
Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.
Resumo:
How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.
Resumo:
A nearly constant switching frequency current hysteresis controller for a 2-level inverter fed induction motor drive is proposed in this paper: The salient features of this controller are fast dynamics for the current, inherent protection against overloads and less switching frequency variation. The large variation of switching frequency as in the conventional hysteresis controller is avoided by defining a current-error boundary which is obtained from the current-error trajectory of the standard space vector PWM. The current-error boundary is computed at every sampling interval based on the induction machine parameters and from the estimated fundamental stator voltage. The stator currents are always monitored and when the current-error exceeds the boundary, voltage space vector is switched to reduce the current-error. The proposed boundary computation algorithm is applicable in linear and over-modulation region and it is simple to implement in any standard digital signal processor: Detailed experimental verification is done using a 7.5 kW induction motor and the results are given to show the performance of the drive at various operating conditions and validate the proposed advantages.
Resumo:
We report a detailed magnetic, dielectric and Raman studies on partially disordered and biphasic double perovskite La2NiMnO6. DC and AC magnetic susceptibility measurements show two magnetic anomalies at T-C1 similar to 270 K and T-C2 similar to 240 K, which may indicate the ferromagnetic ordering of the monoclinic and rhombohedral phases, respectively. A broad peak at a lower temperature (T-sg similar to 70 K) is also observed indicating a spin-glass transition due to partial anti-site disorder of Ni2+ and Mn4+ ions. Unlike the pure monoclinic phase, the biphasic compound exhibits a broad but a clear dielectric anomaly around 270 K which is a signature of magneto-dielectric effect. Temperature-dependent Raman studies between the temperature range 12-300 K in a wide spectral range from 220 cm(-1) to 1530 cm(-1) reveal a strong renormalization of the first as well as second-order Raman modes associated with the (Ni/Mn)O-6 octahedra near T-C1 implying a strong spin-phonon coupling. In addition, an anomaly is seen in the vicinity of spin-glass transition temperature in the temperature dependence of the frequency of the anti-symmetric stretching vibration of the octahedra. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
An attempt has been made to quantify the variability in the seismic activity rate across the whole of India and adjoining areas (0–45°N and 60–105°E) using earthquake database compiled from various sources. Both historical and instrumental data were compiled and the complete catalog of Indian earthquakes till 2010 has been prepared. Region-specific earthquake magnitude scaling relations correlating different magnitude scales were achieved to develop a homogenous earthquake catalog for the region in unified moment magnitude scale. The dependent events (75.3%) in the raw catalog have been removed and the effect of aftershocks on the variation of b value has been quantified. The study area was divided into 2,025 grid points (1°91°) and the spatial variation of the seismicity across the region have been analyzed considering all the events within 300 km radius from each grid point. A significant decrease in seismic b value was seen when declustered catalog was used which illustrates that a larger proportion of dependent events in the earthquake catalog are related to lower magnitude events. A list of 203,448 earth- quakes (including aftershocks and foreshocks) occurred in the region covering the period from 250 B.C. to 2010 A.D. with all available details is uploaded in the website http://www.civil.iisc.ernet.in/*sreevals/resource.htm.