135 resultados para Flavor Problem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Large Hadron Collider (LHC) has completed its run at 8 TeV with the experiments ATLAS and CMS having collected about 25 fb(-1) of data each. Discovery of a light Higgs boson coupled with lack of evidence for supersymmetry at the LHC so far, has motivated studies of supersymmetry in the context of naturalness with the principal focus being the third generation squarks. In this work, we analyze the prospects of the flavor violating decay mode (t) over tilde (1) -> c chi(0)(1) at 8 and 13 TeV center-of-mass energy at the LHC. This channel is also relevant in the dark matter context for the stop-coannihilation scenario, where the relic density depends on the mass difference between the lighter stop quark ((t) over tilde (1)) and the lightest neutralino (chi(0)(1)) states. This channel is extremely challenging to probe, especially for situations when the mass difference between the lighter stop quark and the lightest neutralino is small. Using certain kinematical properties of signal events we find that the level of backgrounds can be reduced substantially. We find that the prospect for this channel is limited due to the low production cross section for top squarks and limited luminosity at 8 TeV, but at the 13 TeV LHC with 100 fb(-1) luminosity, it is possible to probe top squarks with masses up to similar to 450 GeV. We also discuss how the sensitivity could be significantly improved by tagging charm jets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cubic Sieve Method for solving the Discrete Logarithm Problem in prime fields requires a nontrivial solution to the Cubic Sieve Congruence (CSC) x(3) equivalent to y(2)z (mod p), where p is a given prime number. A nontrivial solution must also satisfy x(3) not equal y(2)z and 1 <= x, y, z < p(alpha), where alpha is a given real number such that 1/3 < alpha <= 1/2. The CSC problem is to find an efficient algorithm to obtain a nontrivial solution to CSC. CSC can be parametrized as x equivalent to v(2)z (mod p) and y equivalent to v(3)z (mod p). In this paper, we give a deterministic polynomial-time (O(ln(3) p) bit-operations) algorithm to determine, for a given v, a nontrivial solution to CSC, if one exists. Previously it took (O) over tilde (p(alpha)) time in the worst case to determine this. We relate the CSC problem to the gap problem of fractional part sequences, where we need to determine the non-negative integers N satisfying the fractional part inequality {theta N} < phi (theta and phi are given real numbers). The correspondence between the CSC problem and the gap problem is that determining the parameter z in the former problem corresponds to determining N in the latter problem. We also show in the alpha = 1/2 case of CSC that for a certain class of primes the CSC problem can be solved deterministically in <(O)over tilde>(p(1/3)) time compared to the previous best of (O) over tilde (p(1/2)). It is empirically observed that about one out of three primes is covered by the above class. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we analyse several discontinuous Galerkin (DG) methods for the Stokes problem under minimal regularity on the solution. We assume that the velocity u belongs to H-0(1)(Omega)](d) and the pressure p is an element of L-0(2)(Omega). First, we analyse standard DG methods assuming that the right-hand side f belongs to H-1(Omega) boolean AND L-1(Omega)](d). A DG method that is well defined for f belonging to H-1(Omega)](d) is then investigated. The methods under study include stabilized DG methods using equal-order spaces and inf-sup stable ones where the pressure space is one polynomial degree less than the velocity space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q >= 2 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q >= 2, and has been well-studied from the point of view of approximation. Our main focus is the case when q = 2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the parameterized complexity ofMaxColorable Induced Subgraph on perfect graphs. The problem asks for a maximum sized q-colorable induced subgraph of an input graph G. Yannakakis and Gavril IPL 1987] showed that this problem is NP-complete even on split graphs if q is part of input, but gave a n(O(q)) algorithm on chordal graphs. We first observe that the problem is W2]-hard parameterized by q, even on split graphs. However, when parameterized by l, the number of vertices in the solution, we give two fixed-parameter tractable algorithms. The first algorithm runs in time 5.44(l) (n+#alpha(G))(O(1)) where #alpha(G) is the number of maximal independent sets of the input graph. The second algorithm runs in time q(l+o()l())n(O(1))T(alpha) where T-alpha is the time required to find a maximum independent set in any induced subgraph of G. The first algorithm is efficient when the input graph contains only polynomially many maximal independent sets; for example split graphs and co-chordal graphs. The running time of the second algorithm is FPT in l alone (whenever T-alpha is a polynomial in n), since q <= l for all non-trivial situations. Finally, we show that (under standard complexitytheoretic assumptions) the problem does not admit a polynomial kernel on split and perfect graphs in the following sense: (a) On split graphs, we do not expect a polynomial kernel if q is a part of the input. (b) On perfect graphs, we do not expect a polynomial kernel even for fixed values of q >= 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers a semi-infinite mathematical programming problem with equilibrium constraints (SIMPEC) defined as a semi-infinite mathematical programming problem with complementarity constraints. We establish necessary and sufficient optimality conditions for the (SIMPEC). We also formulate Wolfe- and Mond-Weir-type dual models for (SIMPEC) and establish weak, strong and strict converse duality theorems for (SIMPEC) and the corresponding dual problems under invexity assumptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A residual based a posteriori error estimator is derived for a quadratic finite element method (FEM) for the elliptic obstacle problem. The error estimator involves various residuals consisting of the data of the problem, discrete solution and a Lagrange multiplier related to the obstacle constraint. The choice of the discrete Lagrange multiplier yields an error estimator that is comparable with the error estimator in the case of linear FEM. Further, an a priori error estimate is derived to show that the discrete Lagrange multiplier converges at the same rate as that of the discrete solution of the obstacle problem. The numerical experiments of adaptive FEM show optimal order convergence. This demonstrates that the quadratic FEM for obstacle problem exhibits optimal performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We revisit the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem derived in 25]. Under a mild assumption on the trace of obstacle, we derive a reliable a posteriori error estimator which does not involve min/max functions. A key in this approach is an auxiliary problem with discrete obstacle. Applications to various discontinuous Galerkin finite element methods are presented. Numerical experiments show that the new estimator obtained in this article performs better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classical Erdos-Szekeres theorem states that a convex k-gon exists in every sufficiently large point set. This problem has been well studied and finding tight asymptotic bounds is considered a challenging open problem. Several variants of the Erdos-Szekeres problem have been posed and studied in the last two decades. The well studied variants include the empty convex k-gon problem, convex k-gon with specified number of interior points and the chromatic variant. In this paper, we introduce the following two player game variant of the Erdos-Szekeres problem: Consider a two player game where each player playing in alternate turns, place points in the plane. The objective of the game is to avoid the formation of the convex k-gon among the placed points. The game ends when a convex k-gon is formed and the player who placed the last point loses the game. In our paper we show a winning strategy for the player who plays second in the convex 5-gon game and the empty convex 5-gon game by considering convex layer configurations at each step. We prove that the game always ends in the 9th step by showing that the game reaches a specific set of configurations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let X be a convex curve in the plane (say, the unit circle), and let be a family of planar convex bodies such that every two of them meet at a point of X. Then has a transversal of size at most . Suppose instead that only satisfies the following ``(p, 2)-condition'': Among every p elements of , there are two that meet at a common point of X. Then has a transversal of size . For comparison, the best known bound for the Hadwiger-Debrunner (p, q)-problem in the plane, with , is . Our result generalizes appropriately for if is, for example, the moment curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reliable and efficient a posteriori error estimator is derived for a class of discontinuous Galerkin (DG) methods for the Signorini problem. A common property shared by many DG methods leads to a unified error analysis with the help of a constraint preserving enriching map. The error estimator of DG methods is comparable with the error estimator of the conforming methods. Numerical experiments illustrate the performance of the error estimator. (C) 2015 Elsevier B.V. All rights reserved.