132 resultados para Ferromagnetic particles
Resumo:
Unusual behavior of reentrant spin-glass (RSG) compound Lu2MnNiO6 has been investigated by magnetometry and neutron diffraction. The system possesses a ferromagnetic (FM) ordering below 40 K and undergoes a RSG transition at 20 K. Additionally, Lu2MnNiO6 retains memory effect above the glassy transition till spins sustain ordering. A novel critical behavior with unusual critical exponents (beta =similar to 0.241 and gamma similar to 1.142) is observed that indicates a canting in the spin structure below the ferromagnetic transition (T-C). A comprehensive analysis of temperature-dependent neutron diffraction data and first-principles calculations divulge that a structural distortion induced by an octahedral tilting results in a canted spin structure below T-C.
Resumo:
The compressive behavior of carbon nanotube (CNT) foam with an entangled microstructure has become an important research area due to its excellent energy absorption capability. This report presents a tailored mechanical behavior of CNT foam under an applied magnetic field when all CNTs in the foam are coated with magnetic nanoparticles. The presence of nanoparticles not only enhanced the stiffness of the foam to four times but also revealed a nonlinear variation in both the stress and energy absorption capability with the gradual increase of the magnetic field. Magnetization of both CNT and attached nanoparticles along the magnetic field direction are shown to play a crucial role in determining the dominant deformation mechanism.
Resumo:
We report the origin of room temperature (RT) ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O-3 (PFN) ceramic sample prepared by modified solid-state reaction synthesis by a single-step method, based on X-ray diffraction (XRD), neutron diffraction (ND), Mossbauer spectroscopy and electron paramagnetic resonance (EPR) spectroscopy results. Formation of single-phase monoclinic PFN ceramic with Cm space group was confirmed by XRD and ND at RT. The morphology studied by scanning electron microscopy (SEM) confirmed uniform microstructure of the sample with average grain size of similar to 2 mu m. The ND, Mossbauer spectroscopy, M-H loop and EPR studies were carried out to confirm the existence of weak ferromagnetism at RT. A clear opening of hysteresis (M-H) loop is evidenced as the existence of weak ferromagnetism at RT. EPR spectrum clearly shows the ferromagnetism through a good resonance signal. The symmetric EPR line shape with g = 1.9895 observed in PFN sample was identified to be due to Fe3+ ions. Mossbauer spectroscopy at RT shows superparamagnetic behaviour with presence of Fe in 3+ valence state. Ferroelectric P-E loops on PFN at RT confirm the existing ferroelectric ordering. Our observation is in agreement with literature, and it supports that the origin of ferromagnetism and ferroelectricity is isolated, i.e. from different regions in the sample. Our results do not support the multiferroic nature of PFN at RT.
Resumo:
It is frequently assumed that in the limit of vanishing cooling rate, the glass transition phenomenon becomes a thermodynamic transition at a temperature T-K. However, with any finite cooling rate, the system falls out of equilibrium at temperatures near T-g(> T-K), implying that the very existence of the putative thermodynamic phase transition at T-K can be questioned. Recent studies of systems with randomly pinned particles have hinted that the thermodynamic glass transition may be observed for liquids with randomly pinned particles. This expectation is based on the results of approximate calculations that suggest that the thermodynamic glass transition temperature increases with increasing concentration of pinned particles and it may be possible to equilibrate the system at temperatures near the increased transition temperature. We test the validity of this prediction through extensive molecular dynamics simulations of two model glass-forming liquids in the presence of random pinning. We find that extrapolated thermodynamic transition temperature T-K does not show any sign of increasing with increasing pinning concentration. The main effect of pinning is found to be a rapid decrease in the kinetic fragility of the system with increasing pin concentration. Implications of these observations for current theories of the glass transition are discussed.
Resumo:
We have investigated the impact of partially wetting particles of tens of micrometers on inversion instability of agitated liquid liquid dispersions. Particles of this size can be easily separated from the exit streams to avoid downstream processing-related issues. The results show that the presence of hydrophilic particles in small quantities (volume fraction range of 2 X 10(-4) to 1.25 x 10(-2)) significantly decreases the dispersed phase fraction at which water-in-oil (w/o) dispersions invert but leaves the inversion of oil-in-water (o/w) dispersions nearly unaffected. The addition of the same particles after they are hydrophobized decreases the dispersed phase fraction at which o/w dispersions invert but leaves the inversion of w/o dispersions unaffected. These findings suggest an increased rate of coalescence of drops when particles wet drops preferentially and a marginal decrease when they wet the continuous phase preferentially. High-speed conductivity measurements on w/o dispersion show transient conduction of a few hundred milliseconds duration through voltage pulses. Close to the inversion point, voltage pulses appear at high frequency for even 7 cm separation between the electrodes. The presence of hydrophilic particles produces a nearly identical signal at a significantly lower dispersed phase fraction itself, close to the new lowered inversion point in the presence of particles. We propose formation of elongated domains of the conducting dispersed phase through a rapid coalescence-deformation-breakup process to explain the new observations. The voltage signal appears as a forerunner of inversion instability.
Resumo:
Undoped and Cr (3% and 5%) doped CdS nanoparticles were synthesized by chemical co-precipitation method. The synthesized nanocrystalline particles are characterized by energy dispersive X-ray analysis (EDAX), scanning electron microscope (SEM), X-ray Diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence (PL), Electron paramagnetic resonance (EPR), vibrating sample magnetometer (VSM) and Raman spectroscopy. XRD studies indicate that Cr doping in host CdS result a structural change from Cubic phase to mixed (cubic + hexagonal) phase. Due to quantum confinement effect, widening of the band gap is observed for undoped and Cr doped CdS nanoparticles compared to bulk CdS. The average particle size calculated from band gap values is in good agreement with the TEM study calculation and it is around 4-5 nm. A strong violet emission band consisting of two emission peaks is observed for undoped CdS nanoparticles, whereas for CdS:Cr nanoparticles, a broad emission band ranging from 420 nm to 730 nm with a maximum at similar to 587 nm is observed. The broad emission band is due to the overlapped emissions from variety of defects. EPR spectra of CdS:Cr samples reveal resonance signal at g = 2.143 corresponding to interacting Cr3+ ions. VSM studies indicate that the diamagnetic CdS nanoparticles are transform to ferromagnetic for 3% Cr3+ doping and the ferromagnetic nature is diminished with increasing the doping concentration to 5%. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.
Resumo:
In the case of metallic ferromagnets there has always been a controversy, i.e. whether the magnetic interaction is itinerant or localized. For example SrRuO3 is known to be an itinerant ferromagnet where the spin-spin interaction is expected to be mean field in nature. However, it is reported to behave like Ising, Heisenberg or mean field by different groups. Despite several theoretical and experimental studies and the importance of strongly correlated systems, the experimental conclusion regarding the type of spin-spin interaction in SrRuO3 is lacking. To resolve this issue, we have investigated the critical behaviour in the vicinity of the paramagnetic-ferromagnetic phase transition using various techniques on polycrystalline as well as (001) oriented SrRuO3 films. Our analysis reveals that the application of a scaling law in the field-cooled magnetization data extracts the value of the critical exponent only when it is measured at H -> 0. To substantiate the actual nature without any ambiguity, the critical behavior is studied across the phase transition using the modified Arrott plot, Kouvel-Fisher plot and M-H isotherms. The critical analysis yields self-consistent beta, gamma and delta values and the spin interaction follows the long-range mean field model. Further the directional dependence of the critical exponent is studied in thin films and it reveals the isotropic nature. It is elucidated that the different experimental protocols followed by different groups are the reason for the ambiguity in determining the critical exponents in SrRuO3.
Resumo:
The therapeutic potential of antibodies has not been fully exploited as they fail to cross cell membrane. In this article, we have tested the possibility of using plant virus based nanoparticles for intracellular delivery of antibodies. For this purpose, Sesbania mosaic virus coat protein (CP) was genetically engineered with the B domain of Staphylococcus aureus protein A (SpA) at the beta H-beta I loop, to generate SeMV loop B (SLB), which self-assembled to virus like particles (VLPs) with 43 times higher affinity towards antibodies. CP and SLB could internalize into various types of mammalian cells and SLB could efficiently deliver three different monoclonal antibodies-D6F10 (targeting abrin), anti-a-tubulin (targeting intracellular tubulin) and Herclon (against HER2 receptor) inside the cells. Such a mode of delivery was much more effective than antibodies alone treatment. These results highlight the potential of SLB as a universal nanocarrier for intracellular delivery of antibodies.
Resumo:
Chronic hepatitis C virus (HCV) infection represents a major health threat to global population. In India, approximately 15-20% of cases of chronic liver diseases are caused by HCV infection. Although, new drug treatments hold great promise for HCV eradication in infected individuals, the treatments are highly expensive. A vaccine for preventing or treating HCV infection would be of great value, particularly in developing countries. Several preclinical trials of virus-like particle (VLP) based vaccine strategies are in progress throughout the world. Previously, using baculovirus based system, we have reported the production of hepatitis C virus-like particles (HCV-LPs) encoding structural proteins for genotype 3a, which is prevalent in India. In the present study, we have generated HCV-LPs using adenovirus based system and tried different immunization strategies by using combinations of both kinds of HCV-LPs with other genotype 3a-based immunogens. HCV-LPs and peptides based ELISAs were used to evaluate antibody responses generated by these combinations. Cell-mediated immune responses were measured by using T-cell proliferation assay and intracellular cytokine staining. We observed that administration of recombinant adenoviruses expressing HCV structural proteins as final booster enhances both antibody as well as T-cell responses. Additionally, reduction of binding of VLP and JFH1 virus to human hepatocellular carcinoma cells demonstrated the presence of neutralizing antibodies in immunized sera. Taken together, our results suggest that the combined regimen of VLP followed by recombinant adenovirus could more effectively inhibit HCV infection, endorsing the novel vaccine strategy. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
This study focuses on addressing the propagation front movement in a co-current downdraft gasification system. A detailed single particle modeling analysis extended to the packed bed reactor is used to compare with the experimental measurement as well those available in the literature. This model for biomass gasification systems considered pyrolysis process, gas phase volatile combustion, and heterogeneous char reactions along with gas phase reactions in the packed bed. The pyrolysis kinetics has a critical influence on the gasification process. The propagation front has been shown to increase with air mass flux, attains a peak and then decreases with further increase in air mass flux and finally approaches negative propagation rate. This indicates that front is receding, or no upward movement() bra her it is moving downward towards the char bed. The propagation rate correlates with mass flux as (m) over dot `'(0.883) during the increasing regimes of the front movement The study clearly identifies that bed movement is an important parameter for consideration in a co-current configuration towards establishing the effective bed movement. The study also highlights the importance of surface area to volume ratio of the particles in the packed bed and its influence on the volatile generation. Finally, the gas composition for air gasification under various air mass fluxes is compared with the experimental results. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
We report the first atomistic simulation of two stacked nucleosome core particles (NCPs), with an aim to understand, in molecular detail, how they interact, the effect of salt concentration, and how different histone tails contribute to their interaction, with a special emphasis on the H4 tail, known to have the largest stabilizing effect on the NCP-NCP interaction. We do not observe specific K16-mediated interaction between the H4 tail and the H2A-H2B acidic patch, in contrast with the findings from crystallographic studies, but find that the stacking was stable even in the absence of this interaction. We perform simulations with the H4 tail (partially/completely) removed and find that the region between LYS-16 and LYS-20 of the H4 tail holds special importance in mediating the inter-NCP interaction. Performing similar tail-clipped simulations with the H3 tail removed, we compare the roles of the H3 and H4 tails in maintaining the stacking. We discuss the relevance of our simulation results to the bilayer and other liquid-crystalline phases exhibited by NCPs in vitro and, through an analysis of the histone-histone interface, identify the interactions that could possibly stabilize the inter-NCP interaction in these columnar mesophases. Through the mechanical disruption of the stacked nucleosome system using steered molecular dynamics, we quantify the strength of inter-NCP stacking in the presence and absence of salt. We disrupt the stacking at some specific sites of internucleosomal tail-DNA contact and perform a comparative quantification of the binding strengths of various tails in stabilizing the stacking. We also examine how hydrophobic interactions may contribute to the overall stability of the stacking and find a marked difference in the role of hydrophobic forces as compared with electrostatic forces in determining the stability of the stacked nucleosome system.