145 resultados para Euler number, Irreducible symplectic manifold, Lagrangian fibration, Moduli space
Resumo:
The distributed, low-feedback, timer scheme is used in several wireless systems to select the best node from the available nodes. In it, each node sets a timer as a function of a local preference number called a metric, and transmits a packet when its timer expires. The scheme ensures that the timer of the best node, which has the highest metric, expires first. However, it fails to select the best node if another node transmits a packet within Delta s of the transmission by the best node. We derive the optimal metric-to-timer mappings for the practical scenario where the number of nodes is unknown. We consider two cases in which the probability distribution of the number of nodes is either known a priori or is unknown. In the first case, the optimal mapping maximizes the success probability averaged over the probability distribution. In the second case, a robust mapping maximizes the worst case average success probability over all possible probability distributions on the number of nodes. Results reveal that the proposed mappings deliver significant gains compared to the mappings considered in the literature.
Resumo:
The transonic flutter dip of an aeroelastic system is primarily caused by compressibility of the flowing fluid. Viscous effects are not dominant in the pre-transonic dip region. In fact, an Euler solver can predict this flutter boundary with considerable accuracy. However with an increase in Mach number the shock moves towards the trailing edge causing shock induced separation. This shock-boundary layer interaction changes the flutter boundary in the transonic and post-transonic dip region significantly. We discuss the effect of viscosity in changing the flutter boundary in the post-transonic dip region using a RANS solver coupled to a two-degree of freedom model of the structural dynamics of a wing.
Resumo:
We have introduced the weight of a group which has a presentation with number of relations is at most the number of generators. We have shown that the number of facets of any contracted pseudotriangulation of a connected closed 3-manifold M is at least the weight of the fundamental group of M. This lower bound is sharp for the 3-manifolds RP3, L(3, 1), L(5, 2), S-1 x S-1 x S-1, S-2 x S-1, S-2 (x) under bar S-1 and S-3/Q(8), where Q(8) is the quaternion group. Moreover, there is a unique such facet minimal pseudotriangulation in each of these seven cases. We have also constructed contracted pseudotriangulations of L(kq - 1, q) with 4(q + k - 1) facets for q >= 3, k >= 2 and L(kq + 1, q) with 4(q + k) facets for q >= 4, k >= 1. By a recent result of Swartz, our pseudotriangulations of L(kg + 1, q) are facet minimal when kg + 1 are even. In 1979, Gagliardi found presentations of the fundamental group of a manifold M in terms of a contracted pseudotriangulation of M. Our construction is the converse of this, namely, given a presentation of the fundamental group of a 3-manifold M, we construct a contracted pseudotriangulation of M. So, our construction of a contracted pseudotriangulation of a 3-manifold M is based on a presentation of the fundamental group of M and it is computer-free.
Resumo:
Hydrophobic/superhydrophobic metallic surfaces prepared via chemical treatment are encountered in many industrial scenarios involving the impingement of spray droplets. The effectiveness of such surfaces is understood through the analysis of droplet impact experiments. In the present study, three target surfaces with aluminum (Al-6061) as base material-acid-etched, Octadecyl Trichloro Silane (OTS) coated, and acid-etched plus OTS-coated-were prepared. Experiments on the impact of inertia dominated water drops on these chemically modified aluminum surfaces were carried out with the objective to highlight the effect of chemical treatment on the target surfaces on key sub-processes occurring in drop impact phenomenon. High speed videos of the entire drop impact dynamics were captured at three Weber number (We) conditions representative of high We (We > 200) regime. During the early stages of drop spreading, the drop impact resulted in ejection of secondary droplets from spreading drop front on the etched surfaces resembling prompt splash on rough surfaces whereas no such splashing was observable on untreated aluminum surface. Prominent development of undulations (fingers) were observed at the rim of drop spreading on the etched surfaces; between the etched surfaces the OTS-coated surface showed a subdued development of fingers than the uncoated surface. The impacted drops showed intense receding on OTS-coated surfaces whereas on the etched surface a highly irregular receding, with drop liquid sticking to the surface, was observed. Quantitative analyses were performed to reveal the effect of target surface characteristics on drop impact parameters such as temporal variation of spread factor of drop lamella, temporal variation of average finger length during spreading phase, maximum drop spreading, time taken to attain maximum spreading, sensitivity of maximum spreading to We, number of fingers at maximum spreading, and average receding velocity of drop lamella. Existing models for maximum drop spreading showed reasonably good agreement with the experimental measurements on the target surfaces except the acid-etched surface. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Let Z(n) denote the ring of integers modulo n. A permutation of Z(n) is a sequence of n distinct elements of Z(n). Addition and subtraction of two permutations is defined element-wise. In this paper we consider two extremal problems on permutations of Z(n), namely, the maximum size of a collection of permutations such that the sum of any two distinct permutations in the collection is again a permutation, and the maximum size of a collection of permutations such that no sum of two distinct permutations in the collection is a permutation. Let the sizes be denoted by s (n) and t (n) respectively. The case when n is even is trivial in both the cases, with s (n) = 1 and t (n) = n!. For n odd, we prove (n phi(n))/2(k) <= s(n) <= n!.2(-)(n-1)/2/((n-1)/2)! and 2 (n-1)/2 . (n-1/2)! <= t (n) <= 2(k) . (n-1)!/phi(n), where k is the number of distinct prime divisors of n and phi is the Euler's totient function.
Resumo:
The reduction of the diffusion energy barrier for Li in electrodes is one of the required criteria to achieve better performances in Li ion batteries. Using density functional theory based calculations, we report a pressure induced manifold enhancement of Li-kinetics in bulk FCC fullerene. Scanning of the potential energy surface reveals a diffusion path with a low energy barrier of 0.62 eV, which reduces further under the application of hydrostatic pressure. The pressure induced reduction in the diffusion barrier continues till a uniform volume strain of 17.7% is reached. Further enhancement of strain increases the barrier due to the repulsion caused by C-C bond formation between two neighbouring fullerenes. The decrease in the barrier is attributed to the combined effect of charge transfer triggered by the enhanced interaction of Li with the fullerene as well as the change in profile of the local potential, which becomes more attractive for Li. The lowering of the barrier leads to an enhancement of two orders of magnitude in Li diffusivity at room temperature making pressurized bulk fullerene a promising artificial solid electrolyte interface (SEI) for a faster rechargeable battery.
Resumo:
Light weight structures with tailored mechanical properties have evolved beyond regular hexagonal/circular honeycomb topology. For applications which demand anisotropic mechanical properties, elliptical-celled structures offer interesting features. This paper characterizes the anisotropic in-plane elastic response of coated thin elliptical tubes in different array patterns viz, close-packed, diagonal and rectangular patterns under compression. This paper also extends earlier works on elliptical close-packed structure to a more general case of coated tubes. Theoretical framework using thin ring theory provides formulae in terms of geometric and material parameters. These are compared with a series of FE simulations using contact elements. The FE results are presented as graphs to aid in design. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Rainbow connection number, rc(G), of a connected graph G is the minimum number of colors needed to color its edges so that every pair of vertices is connected by at least one path in which no two edges are colored the same (note that the coloring need not be proper). In this paper we study the rainbow connection number with respect to three important graph product operations (namely the Cartesian product, the lexicographic product and the strong product) and the operation of taking the power of a graph. In this direction, we show that if G is a graph obtained by applying any of the operations mentioned above on non-trivial graphs, then rc(G) a parts per thousand currency sign 2r(G) + c, where r(G) denotes the radius of G and . In general the rainbow connection number of a bridgeless graph can be as high as the square of its radius 1]. This is an attempt to identify some graph classes which have rainbow connection number very close to the obvious lower bound of diameter (and thus the radius). The bounds reported are tight up to additive constants. The proofs are constructive and hence yield polynomial time -factor approximation algorithms.
Resumo:
Central to network tomography is the problem of identifiability, the ability to identify internal network characteristics uniquely from end-to-end measurements. This problem is often underconstrained even when internal network characteristics such as link delays are modeled as additive constants. While it is known that the network topology can play a role in determining the extent of identifiability, there is a lack in the fundamental understanding of being able to quantify it for a given network. In this paper, we consider the problem of identifying additive link metrics in an arbitrary undirected network using measurement nodes and establishing paths/cycles between them. For a given placement of measurement nodes, we define and derive the ``link rank'' of the network-the maximum number of linearly independent cycles/paths that may be established between the measurement nodes. We achieve this in linear time. The link rank helps quantify the exact extent of identifiability in a network. We also develop a quadratic time algorithm to compute a set of cycles/paths that achieves the maximum rank.
Resumo:
In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.
Resumo:
Small covers were introduced by Davis and Januszkiewicz in 1991. We introduce the notion of equilibrium triangulations for small covers. We study equilibrium and vertex minimal 4-equivariant triangulations of 2-dimensional small covers. We discuss vertex minimal equilibrium triangulations of RP3#RP3, S-1 x RP2 and a nontrivial S-1 bundle over RP2. We construct some nice equilibrium triangulations of the real projective space RPn with 2(n) + n 1 vertices. The main tool is the theory of small covers.
Resumo:
The behaviour of turbulent Prandtl/Schmidt number is explored through the model-free simulation results. It has been observed that compressibility affects the Reynolds scalar flux vectors. Reduced peak values are also observed for compressible convective Mach number mixing layer as compared with the incompressible convective Mach number counterpart, indicating a reduction in the mixing of enthalpy and species. Pr-t and Sc-t variations also indicate a reduction in mixing. It is observed that unlike the incompressible case, it is difficult to assign a constant value to these numbers due to their continuous variation in space. Modelling of Pr-t and Sc-t would be necessary to cater for this continuous spatial variation. However, the turbulent Lewis number is evaluated to be near unity for the compressible case, making it necessary to model only one of the Pr-t and Sc-t..
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
Resumo:
We investigate the properties of the Dirac operator on manifolds with boundaries in the presence of the Atiyah-Patodi-Singer boundary condition. An exact counting of the number of edge states for boundaries with isometry of a sphere is given. We show that the problem with the above boundary condition can be mapped to one where the manifold is extended beyond the boundary and the boundary condition is replaced by a delta function potential of suitable strength. We also briefly highlight how the problem of the self-adjointness of the operators in the presence of moving boundaries can be simplified by suitable transformations which render the boundary fixed and modify the Hamiltonian and the boundary condition to reflect the effect of moving boundary.