220 resultados para ENZYME PURIFICATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serine hydroxymethyltransferase (SHMT) belongs to the alpha-family of pyridoxal 5'-phosphate-dependent enzymes and catalyzes the reversible conversion of L-Ser and etrahydrofolate to Gly and 5,10-methylene tetrahydrofolate. 5,10-Methylene tetrahydrofolate serves as a source of one-carbon fragment in many biological processes. SHMT also catalyzes the tetrahydrofolate-independent conversion of L-allo-Thr to Gly and acetaldehyde. The crystal structure of Bacillus stearothermophilus SHMT (bsSHMT) suggested that E53 interacts with the substrate, L-Ser and etrahydrofolate. To elucidate the role of E53, it was mutated to Q and structural and biochemical studies were carried out with the mutant enzyme. The internal aldimine structure of E53QbsSHMT was similar to that of the except for significant changes at Q53, Y60 and Y61. The wild-type enzyme, carboxyl of Gly and side chain of L-Ser were in two conformations in the respective external aldimine structures. The mutant enzyme was completely inactive for tetrahydrofolate-depen dent cleavage of L-Ser, whereas there was a 1.5-fold increase in the rate of tetrahydrofolate-independent reaction with L-allo-Thr. The results obtained from these studies suggest that E53 plays an essential role in tetrahydrofolate/5-formyl tetrahydrofolate binding and in the proper positioning of C beta of L-Ser for direct attack by N5 of tetrahydrofolate. Most interestingly, the structure of the complex obtained by cocrystallization of E53QbsSHMT with Gly and 5-formyl tetrahydrofolate revealed the gem-diamine form of pyridoxal 5'-phosphate bound to Gly and active site Lys. However, density for 5-formyl tetrahydrofolate was not observed. Gly carboxylate was in a single conformation, whereas pyridoxal 5'-phosphate had two distinct conformations. The differences between the structures of this complex and Gly external aldimine suggest that the changes induced by initial binding of 5-formyl tetrahydrofolate are retained even though 5-formyl tetrahydrofolate is absent in the final structure. Spectral studies carried out with this mutant enzyme also suggest that 5-formyl tetrahydrofolate binds to the E53QbsSHMT-Gly complex forming a quinonoid intermediate and falls off within 4 h of dialysis, leaving behind the mutant enzyme in the gemdiamine form. This is the first report to provide direct evidence for enzyme memory based on the crystal structure of enzyme complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly purified enzyme from mung bean seedlings hydrolyzing FAD at pH 9.4 and temperature 49 °, functioned with an initial fast rate followed by a second slower rate. The activity was linear with enzyme concentration over a small range of concentration and was dependent on the time of incubation. Inhibition of enzyme activity with increasing concentrations of AMP was sigmoid;concentrations less than 1 × 10−6 M were without effect, concentrations between 1 × 10−6 and 8 × 10−5 M inhibited by 20% and concentrations beyond 8 × 10−5 Image caused progressive inhibition. Concentrations beyond 1 × 10−3 Image inhibited the activity completely. Preincubation of the enzyme with PCMB or NEM, or aging, or reversible denaturation with urea abolished the inhibitory effect of AMP at concentrations lower than 8 × 10−6 Image . The aged enzyme could be reactivated by ADP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major limitations to the application of high-resolution biophysical techniques such as X-crystallography and spectroscopic analyses to structure-function studies of Saccharomyces cerevisiae Hop1 protein has been the non-availability of sufficient quantities of functionally active pure protein. This has, indeed, been the case of many proteins, including yeast synaptonemal complex proteins. In this study, we have performed expression screening in Escherichia coli host strains, capable of high-level expression of soluble S. cerevisiae Hop1 protein. A new protocol has been developed for expression and purification of S. cerevisiae Hop1 protein, based on the presence of hexa-histidine tag and double-stranded DNA-Cellulose chromatography. Recombinant S. cerevisiae Hop1 protein was >98% pure and exhibited DNA-binding activity with high-affinity to the Holliday junction. The availability of the recombinant HOP1 expression vector and active Hop1 protein would facilitate structure-function investigations as well as the generation of appropriate truncated and site-directed mutant proteins, respectively. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A soluble fraction of catalyzed the hydroxylation of mandelic acid to -hydroxymandelic acid. The enzyme had a pH optimum of 5.4 and showed an absolute requirement for Fe2+, tetrahydropteridine, NADPH. -Hydroxymandelate, the product of the enzyme reaction was identified by paper chromatography, thin layer chromatography, UV and IR-spectra

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of proteins involved in de novo biosynthesis of purine nucleotides is central in the development of antibiotics and anticancer drugs. In view of this, a protein from the hyperthermophile Pyrococcus horikoshii OT3 was isolated, purified and crystallized using the microbatch method. Its primary structure was found to be similar to that of SAICAR synthetase, which catalyses the seventh step of de novo purine biosynthesis. A diffraction-quality crystal was obtained using Hampton Research Crystal Screen II condition No. 34, consisting of 0.05 M cadmium sulfate hydrate, 0.1 M HEPES buffer pH 7.5 and 1.0 M sodium acetate trihydrate, with 40%(v/v) 1,4-butanediol as an additive. The crystal belonged to space group P3(1), with unit-cell parameters a = b = 95.62, c = 149.13 angstrom. Assuming the presence of a hexamer in the asymmetric unit resulted in a Matthews coefficient (V-M) of 2.3 angstrom(3) Da(-1), corresponding to a solvent content of about 46%. A detailed study of this protein will yield insights into structural stability at high temperatures and should be highly relevant to the development of antibiotics and anticancer drugs targeting the biosynthesis of purine nucleotides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors. (C) 2010 IUBMB IUBMB Life, 62(6): 467-476.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellobiohydrolases I and II were purified to homogeneity from culture filtrates of a thermophilic fungus, Chaetomium thermophile var. coprophile, by using a combination of ion-exchange and gel filtration chromatographic procedures. The molecular weights of cellobiohydrolase I and II were estimated to be 60000 and 40000 and the enzymes were found to be glycoproteins containing 17 and 22.8% carbohydrate, respectively. The two forms differed in their amino-acid composition mainly with respect to threonine, alanine, methionine and arginine. Antibodies produced against either form of cellobiohydrolases failed to cross-react with the other. The tryptic maps of the two enzymes were found to be different. The temperature optima for cellobiohydrolase I and II were 75 and 70°C, and they were optimally active at pH 5.8 and 6.4, respectively. Both enzymes were stable at higher temperatures and were able to degrade crystalline cellulosic materals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the mechanism of decarboxylation by 2,3-dihydroxybenzoic acid decarboxylase, chemical modification studies were carried out. Specific modification of the amino acid residues with diethylpyrocarbonate, N-bromosuccinimide and N-ethylmaleiimide revealed that at least one residue each of histidine, tryptophan and cysteine were essential for the activity. Various substrate analogs which were potential inhibitors significantly protected the enzyme against inactivation. The modification of residues at low concentration of the reagents and the protection experiments suggested that these amino acid residues might be present at the active site. Studies also suggested that the carboxyl and ortho-hydroxyl groups of the substrate are essential for interaction with the enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been carried out on the proteinase inhibitors of grain sorghum (Sorghum bicolor (L.) Moench). One of the inhibitors has been isolated in a pure form and characterized. The proteinase inhibitor was extracted from the acetone-defatted sorghum meal and purified by selective thermal denaturation, ammonium sulfate fractionation, Sephadex gel filtration and DEAE-cellulose chromatography (DEAE-preparation II). This preparation was demonstrated to be a mixture of three inhibitor components by polyacrylamide disc gel electrophoresis. Further resolution of this mixture into Inhibitors I to III was achieved by QAE-Sephadex chromatography. Sorghum Inhibitor III was homogeneous by the criteria of disc gel electrophoresis and has been more fully characterized. A molecular weight of 25,000 was obtained for Inhibitor III by gel filtration and was in agreement with the value calculated from the amino acid composition of the inhibitor. The N-terminal amino acid residue of Inhibitor III, a single chain protein, was isoleucine. Sorghum proteinase inhibitors inhibit specifically the serine proteinases and are inactive towards the other classes of proteinases. Inhibitor III is primarily a chymotrypsin inhibitor, whereas Inhibitors I and II inhibit both trypsin and chymotrypsin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active preparations of tRNA and aminoacyl-tRNA synthetases have been isolated from exponentially growing cells of Mycobacterium smegmatis and Mycobacterium tuberculosis H37Rv. Though the aminoacyl-tRNA synthetases of older cells retain their activity, the tRNAs seem to undergo modification and show poorer activity. The mycobacterial enzyme preparations catalyse homologous and heterologous aminoacylation between tRNA from the two species (M. smegmatis and M. tuberculosis H37Rv) or from Escherichia coli, with equal efficiency; tRNA samples from eukaryotic cells (yeast and rat liver) do not serve as substrates for the mycobacterial synthetases. The analytical separation of the different amino acid specific tRNAs from M. smegmatis resembles the pattern found in other bacteria. Purification of valine- (three species) and methionine-specific tRNA (two species) to 70-80% purity has been accomplished by using column-chromatographic techniques. Of the two species of tRNAMet, one can be formylated in the presence of formyl tetrahydrofolate and the transformylase from mycobacteria.