174 resultados para Discrete Gaussian Sampling
Resumo:
We consider the MIMO X channel (XC), a system consisting of two transmit-receive pairs, where each transmitter communicates with both the receivers. Both the transmitters and receivers are equipped with multiple antennas. First, we derive an upper bound on the sum-rate capacity of the MIMO XC under individual power constraint at each transmitter. The sum-rate capacity of the two-user multiple access channel (MAC) that results when receiver cooperation is assumed forms an upper bound on the sum-rate capacity of the MIMO XC. We tighten this bound by considering noise correlation between the receivers and deriving the worst noise covariance matrix. It is shown that the worst noise covariance matrix is a saddle-point of a zero-sum, two-player convex-concave game, which is solved through a primal-dual interior point method that solves the maximization and the minimization parts of the problem simultaneously. Next, we propose an achievable scheme which employs dirty paper coding at the transmitters and successive decoding at the receivers. We show that the derived upper bound is close to the achievable region of the proposed scheme at low to medium SNRs.
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed.
Resumo:
An opportunistic, rate-adaptive system exploits multi-user diversity by selecting the best node, which has the highest channel power gain, and adapting the data rate to selected node's channel gain. Since channel knowledge is local to a node, we propose using a distributed, low-feedback timer backoff scheme to select the best node. It uses a mapping that maps the channel gain, or, in general, a real-valued metric, to a timer value. The mapping is such that timers of nodes with higher metrics expire earlier. Our goal is to maximize the system throughput when rate adaptation is discrete, as is the case in practice. To improve throughput, we use a pragmatic selection policy, in which even a node other than the best node can be selected. We derive several novel, insightful results about the optimal mapping and develop an algorithm to compute it. These results bring out the inter-relationship between the discrete rate adaptation rule, optimal mapping, and selection policy. We also extensively benchmark the performance of the optimal mapping with several timer and opportunistic multiple access schemes considered in the literature, and demonstrate that the developed scheme is effective in many regimes of interest.
Resumo:
The confinement of a polymer to volumes whose characteristic linear dimensions are comparable to or smaller than its bulk radius of gyration R-G,R-bulk can produce significant changes in its static and dynamic properties, with important implications for the understanding of single-molecule processes in biology and chemistry. In this paper, we present calculations of the effects of a narrow rectangular slit of thickness d on the scaling behavior of the diffusivity D and relaxation time tau(r) of a Gaussian chain of polymerization index N and persistence length l(0). The calculations are based on the Rouse-Zimm model of chain dynamics, with the pre-averaged hydrodynamic interaction being obtained from the solutions to Stokes equations for an incompressible fluid in a parallel plate geometry in the limit of small d. They go beyond de Gennes' purely phenomenological analysis of the problem based on blobs, which has so far been the only analytical route to the determination of chain scaling behavior for this particular geometry. The present model predicts that D similar to dN(-1) ln(N/d(2)) and tau(r) similar to N(2)d(-1) ln(N/d(2))(-1) in the regime of moderate confinement, where l(0) << d < R-G,R-bulk. The corresponding results for the blob model have exactly the same power law behavior, but contain no logarithmic corrections; the difference suggests that segments within a blob may actually be partially draining and not non-draining as generally assumed. (C) 2013 AIP Publishing LLC.
Resumo:
In this paper, we propose low-complexity algorithms based on Monte Carlo sampling for signal detection and channel estimation on the uplink in large-scale multiuser multiple-input-multiple-output (MIMO) systems with tens to hundreds of antennas at the base station (BS) and a similar number of uplink users. A BS receiver that employs a novel mixed sampling technique (which makes a probabilistic choice between Gibbs sampling and random uniform sampling in each coordinate update) for detection and a Gibbs-sampling-based method for channel estimation is proposed. The algorithm proposed for detection alleviates the stalling problem encountered at high signal-to-noise ratios (SNRs) in conventional Gibbs-sampling-based detection and achieves near-optimal performance in large systems with M-ary quadrature amplitude modulation (M-QAM). A novel ingredient in the detection algorithm that is responsible for achieving near-optimal performance at low complexity is the joint use of a mixed Gibbs sampling (MGS) strategy coupled with a multiple restart (MR) strategy with an efficient restart criterion. Near-optimal detection performance is demonstrated for a large number of BS antennas and users (e. g., 64 and 128 BS antennas and users). The proposed Gibbs-sampling-based channel estimation algorithm refines an initial estimate of the channel obtained during the pilot phase through iterations with the proposed MGS-based detection during the data phase. In time-division duplex systems where channel reciprocity holds, these channel estimates can be used for multiuser MIMO precoding on the downlink. The proposed receiver is shown to achieve good performance and scale well for large dimensions.
Resumo:
This paper proposes a sparse modeling approach to solve ordinal regression problems using Gaussian processes (GP). Designing a sparse GP model is important from training time and inference time viewpoints. We first propose a variant of the Gaussian process ordinal regression (GPOR) approach, leave-one-out GPOR (LOO-GPOR). It performs model selection using the leave-one-out cross-validation (LOO-CV) technique. We then provide an approach to design a sparse model for GPOR. The sparse GPOR model reduces computational time and storage requirements. Further, it provides faster inference. We compare the proposed approaches with the state-of-the-art GPOR approach on some benchmark data sets. Experimental results show that the proposed approaches are competitive.
Resumo:
In this paper, we consider the problem of finding a spectrum hole of a specified bandwidth in a given wide band of interest. We propose a new, simple and easily implementable sub-Nyquist sampling scheme for signal acquisition and a spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy in the frequency domain by testing a group of adjacent subbands in a single test. The sampling scheme deliberately introduces aliasing during signal acquisition, resulting in a signal that is the sum of signals from adjacent sub-bands. Energy-based hypothesis tests are used to provide an occupancy decision over the group of subbands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes. We extend this framework to a multi-stage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including non-contiguous spectrum hole search. Further, we provide the analytical means to optimize the hypothesis tests with respect to the detection thresholds, number of samples and group size to minimize the detection delay under a given error rate constraint. Depending on the sparsity and SNR, the proposed algorithms can lead to significantly lower detection delays compared to a conventional bin-by-bin energy detection scheme; the latter is in fact a special case of the group test when the group size is set to 1. We validate our analytical results via Monte Carlo simulations.
Resumo:
In this paper, a nonlinear suboptimal detector whose performance in heavy-tailed noise is significantly better than that of the matched filter is proposed. The detector consists of a nonlinear wavelet denoising filter to enhance the signal-to-noise ratio, followed by a replica correlator. Performance of the detector is investigated through an asymptotic theoretical analysis as well as Monte Carlo simulations. The proposed detector offers the following advantages over the optimal (in the Neyman-Pearson sense) detector: it is easier to implement, and it is more robust with respect to error in modeling the probability distribution of noise.
Resumo:
Impoverishment of particles, i.e. the discretely simulated sample paths of the process dynamics, poses a major obstacle in employing the particle filters for large dimensional nonlinear system identification. A known route of alleviating this impoverishment, i.e. of using an exponentially increasing ensemble size vis-a-vis the system dimension, remains computationally infeasible in most cases of practical importance. In this work, we explore the possibility of unscented transformation on Gaussian random variables, as incorporated within a scaled Gaussian sum stochastic filter, as a means of applying the nonlinear stochastic filtering theory to higher dimensional structural system identification problems. As an additional strategy to reconcile the evolving process dynamics with the observation history, the proposed filtering scheme also modifies the process model via the incorporation of gain-weighted innovation terms. The reported numerical work on the identification of structural dynamic models of dimension up to 100 is indicative of the potential of the proposed filter in realizing the stated aim of successfully treating relatively larger dimensional filtering problems. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The effects of the initial height on the temporal persistence probability of steady-state height fluctuations in up-down symmetric linear models of surface growth are investigated. We study the (1 + 1)-dimensional Family model and the (1 + 1)-and (2 + 1)-dimensional larger curvature (LC) model. Both the Family and LC models have up-down symmetry, so the positive and negative persistence probabilities in the steady state, averaged over all values of the initial height h(0), are equal to each other. However, these two probabilities are not equal if one considers a fixed nonzero value of h(0). Plots of the positive persistence probability for negative initial height versus time exhibit power-law behavior if the magnitude of the initial height is larger than the interface width at saturation. By symmetry, the negative persistence probability for positive initial height also exhibits the same behavior. The persistence exponent that describes this power-law decay decreases as the magnitude of the initial height is increased. The dependence of the persistence probability on the initial height, the system size, and the discrete sampling time is found to exhibit scaling behavior.
Resumo:
We study the diversity order vs rate of an additive white Gaussian noise (AWGN) channel in the whole capacity region. We show that for discrete input as well as for continuous input, Gallager's upper bounds on error probability have exponential diversity in low and high rate region but only subexponential in the mid-rate region. For the best available lower bounds and for the practical codes one observes exponential diversity throughout the capacity region. However we also show that performance of practical codes is close to Gallager's upper bounds and the mid-rate subexponential diversity has a bearing on the performance of the practical codes. Finally we show that the upper bounds with Gaussian input provide good approximation throughout the capacity region even for finite constellation.
Resumo:
We consider a Gaussian multiple access channel (GMAC) where the users are sensor nodes powered by energy harvesters. The energy harvesters may have finite or infinite buffer to store the harvested energy. First, we find the capacity region of a GMAC powered by transmit nodes with an infinite energy buffer. Next, we consider a GMAC with the transmitting nodes equipped with a finite energy buffer. Initially we assume perfect knowledge of the buffer state information at both the encoders and the decoder. We provide an achievable region for this case. We also generalize the achievable region when only partial information about buffer state is available at both the encoders and the decoder.
Achievable rate region of gaussian broadcast channel with finite input alphabet and quantized output
Resumo:
In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.
Resumo:
We consider the problem of characterizing the minimum average delay, or equivalently the minimum average queue length, of message symbols randomly arriving to the transmitter queue of a point-to-point link which dynamically selects a (n, k) block code from a given collection. The system is modeled by a discrete time queue with an IID batch arrival process and batch service. We obtain a lower bound on the minimum average queue length, which is the optimal value for a linear program, using only the mean (λ) and variance (σ2) of the batch arrivals. For a finite collection of (n, k) codes the minimum achievable average queue length is shown to be Θ(1/ε) as ε ↓ 0 where ε is the difference between the maximum code rate and λ. We obtain a sufficient condition for code rate selection policies to achieve this optimal growth rate. A simple family of policies that use only one block code each as well as two other heuristic policies are shown to be weakly optimal in the sense of achieving the 1/ε growth rate. An appropriate selection from the family of policies that use only one block code each is also shown to achieve the optimal coefficient σ2/2 of the 1/ε growth rate. We compare the performance of the heuristic policies with the minimum achievable average queue length and the lower bound numerically. For a countable collection of (n, k) codes, the optimal average queue length is shown to be Ω(1/ε). We illustrate the selectivity among policies of the growth rate optimality criterion for both finite and countable collections of (n, k) block codes.
Resumo:
Equimolar combination of a series of binuclear half-sandwich p-cymene ruthenium(II) building units Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1a](OTf)(2), Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)( MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1b](OTf)(2) and Ru-2(mu-eta(4)-C6H2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](OTf)(2) 1c](OTf)(2) separately with imidazole-based ditopic ligands (L-1-L-2) in methanol yielded a series of tetranuclear metallamacrocycles 2-7](OTf)(4), respectively L-1 = 1,4-bis(imidazole-1-yl)benzene; L-2 = 4,4'-bis(imidazole-1-yl)biphenyl; OTf- = O3SCF3-]. Similarly, the reaction of Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)2](OTf)(2) 1a](OTf)(2) with a triazine-based tritopic ligand 1,3,5-tris(imidazole-1-yl) triazine (L3) in 3: 2 M ratio afforded an unexpected tetranuclear macrocycle 8](OTf)(4) instead of an expected trigonal prismatic cage 8a](OTf)(6). All the self-assembled macrocycles 2-8](OTf)(4) were isolated in moderate to high yields and were fully characterized by multinuclear H-1, F-19] NMR, IR and electrospray ionization mass spectrometry (ESI-MS). In addition, X-ray diffraction study on the single crystals of 3](OTf)(4) and 8](OTf)(4) also indicated the formation 2 + 2] self-assembled macrocycles. Despite the possibility of formation of different conformational isomeric macrocycles (syn-and anti) and polymeric product due to free rotation of ligand sites of imidazole linkers, the selective formation of single conformational isomer (anti) as the only product is quite interesting. Furthermore, the photo-and electrochemical properties of these assemblies have been studied using UV/Vis absorption and cyclic voltammetry analysis. (c) 2013 Elsevier B.V. All rights reserved.