150 resultados para Difference Equation
Resumo:
The transport of reactive solutes through fractured porous formations has been analyzed. The transport through the porous block is represented by a general multiprocess nonequilibrium equation (MPNE), which, for the fracture, is represented by an advection-dispersion equation with linear equilibrium sorption and first-order transformation. An implicit finite-difference technique has been used to solve the two coupled equations. The transport characteristics have been analyzed in terms of zeroth, first, and second temporal moments of the solute in the fracture. The solute behavior for fractured impermeable and fractured permeable formations are first compared and the effects of various fracture and matrix transport parameters are analyzed. Subsequently, the transport through a fractured permeable formation is analyzed to ascertain the effect of equilibrium sorption, rate-limited sorption, and the multiprocess nonequilibrium transport process. It was found that the temporal moments were nearly identical for the fractured impermeable and permeable formations when both the diffusion coefficient and the first-order transformation coefficient were relatively large. The multiprocess nonequilibrium model resulted in a smaller mass recovery in the fracture and higher dispersion than the equilibrium and rate-limited sorption models. DOI: 10.1061/(ASCE)HE.19435584.0000586. (C) 2012 American Society of Civil Engineers.
Resumo:
In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.
Resumo:
The nanoindentation technique can be employed in shape memory alloys (SMAs) to discern the transformation temperatures as well as to characterize their mechanical behavior. In this paper, we use it with simultaneous measurements of the mechanical and the electrical contact resistances (ECR) at room temperature to probe two SMAs: austenite (RTA) and martensite (RTM). Two different types of indenter tips - Berkovich and spherical - are employed to examine the SMAs' indentation responses as a function of the representative strain, epsilon(R). In Berkovich indentation, because of the sharp nature of the tip, and in consequence the high levels of strain imposed, discerning the two SMAs on the basis of the indentation response alone is difficult. In the case of the spherical tip, epsilon(R) is systematically varied and its effect on the depth recovery ratio, eta(d), is examined. Results indicate that RTA has higher eta(d) than RTM, but the difference decreases with increasing epsilon(R) such that eta(d) values for both the alloys would be similar in the fully plastic regime. The experimental trends in eta(d) vs. epsilon(R) for both the alloys could be described well with a eta(d) proportional to (epsilon(R))(-1) type equation, which is developed on the basis of a phenomenological model. This fit, in turn, directs us to the maximum epsilon(R), below which plasticity underneath the indenter would not mask the differences in the two SMAs. It was demonstrated that the ECR measurements complement the mechanical measurements in demarcating the reverse transformation from martensite to austenite during unloading of RTA, wherein a marked increase in the voltage was noted. A correlation between recovery due to reverse transformation during unloading and increase in voltage (and hence the electrical resistance) was found. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Phototaxis is a directed swimming response dependent upon the light intensity sensed by micro-organisms. Positive (negative) phototaxis denotes the motion directed towards (away from) the source of light. Using the phototaxis model of Ghorai, Panda, and Hill ''Bioconvection in a suspension of isotropically scattering phototactic algae,'' Phys. Fluids 22, 071901 (2010)], we investigate two-dimensional phototactic bioconvection in an absorbing and isotropic scattering suspension in the nonlinear regime. The suspension is confined by a rigid bottom boundary, and stress-free top and lateral boundaries. The governing equations for phototactic bioconvection consist of Navier-Stokes equations for an incompressible fluid coupled with a conservation equation for micro-organisms and the radiative transfer equation for light transport. The governing system is solved efficiently using a semi-implicit second-order accurate conservative finite-difference method. The radiative transfer equation is solved by the finite volume method using a suitable step scheme. The resulting bioconvective patterns differ qualitatively from those found by Ghorai and Hill ''Penetrative phototactic bioconvection,'' Phys. Fluids 17, 074101 (2005)] at a higher critical wavelength due to the effects of scattering. The solutions show transition from steady state to periodic oscillations as the governing parameters are varied. Also, we notice the accumulation of micro-organisms in two horizontal layers at two different depths via their mean swimming orientation profile for some governing parameters at a higher scattering albedo. (C) 2013 AIP Publishing LLC.
Resumo:
We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.
Resumo:
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3-8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal-India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
We undertake a systematic, direct numerical simulation of the twodimensional, Fourier-truncated, Gross-Pitaevskii equation to study the turbulent evolutions of its solutions for a variety of initial conditions and a wide range of parameters. We find that the time evolution of this system can be classified into four regimes with qualitatively different statistical properties. Firstly, there are transients that depend on the initial conditions. In the second regime, powerlaw scaling regions, in the energy and the occupation-number spectra, appear and start to develop; the exponents of these power laws and the extents of the scaling regions change with time and depend on the initial condition. In the third regime, the spectra drop rapidly for modes with wave numbers k > kc and partial thermalization takes place for modes with k < kc; the self-truncation wave number kc(t) depends on the initial conditions and it grows either as a power of t or as log t. Finally, in the fourth regime, complete thermalization is achieved and, if we account for finite-size effects carefully, correlation functions and spectra are consistent with their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a natural generalization of recent studies of thermalization in the Euler and other hydrodynamical equations; it combines ideas from fluid dynamics and turbulence, on the one hand, and equilibrium and nonequilibrium statistical mechanics on the other.
Resumo:
In this article, we obtain explicit solutions of a system of forced Burgers equation subject to some classes of bounded and compactly supported initial data and also subject to certain unbounded initial data. In a series of papers, Rao and Yadav (2010) 1-3] obtained explicit solutions of a nonhomogeneous Burgers equation in one dimension subject to certain classes of bounded and unbounded initial data. Earlier Kloosterziel (1990) 4] represented the solution of an initial value problem for the heat equation, with initial data in L-2 (R-n, e(vertical bar x vertical bar 2/2)), as a series of self-similar solutions of the heat equation in R-n. Here we express the solutions of certain classes of Cauchy problems for a system of forced Burgers equation in terms of self-similar solutions of some linear partial differential equations. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Although grain boundary sliding (GBS) has been recognized as an important process during high-temperature deformation in crystalline materials, there is paucity in experimental data for characterizing a constitutive equation for GBS. High-temperature tensile creep experiments were conducted, together with measurements of GBS at different strains, stresses, grain sizes, and temperatures. Experimental data obtained on a Mg AZ31 alloy demonstrate that, for the first time, dynamic recrystallization during creep does not alter the contribution of GBS to creep during high-temperature deformation. The experimentally observed invariance of the sliding contribution with strain was used together with the creep data for developing a constitutive equation for GBS in a manner similar to the standard creep equation. Using this new approach, it is demonstrated that the stress, grain size, and temperature dependence for creep and GBS are identical. This is rationalized by a model based on GBS controlled by dislocations, within grains or near-grain boundaries. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
This paper attempts to unravel any relations that may exist between turbulent shear flows and statistical mechanics through a detailed numerical investigation in the simplest case where both can be well defined. The flow considered for the purpose is the two-dimensional (2D) temporal free shear layer with a velocity difference Delta U across it, statistically homogeneous in the streamwise direction (x) and evolving from a plane vortex sheet in the direction normal to it (y) in a periodic-in-x domain L x +/-infinity. Extensive computer simulations of the flow are carried out through appropriate initial-value problems for a ``vortex gas'' comprising N point vortices of the same strength (gamma = L Delta U/N) and sign. Such a vortex gas is known to provide weak solutions of the Euler equation. More than ten different initial-condition classes are investigated using simulations involving up to 32 000 vortices, with ensemble averages evaluated over up to 10(3) realizations and integration over 10(4)L/Delta U. The temporal evolution of such a system is found to exhibit three distinct regimes. In Regime I the evolution is strongly influenced by the initial condition, sometimes lasting a significant fraction of L/Delta U. Regime III is a long-time domain-dependent evolution towards a statistically stationary state, via ``violent'' and ``slow'' relaxations P.-H. Chavanis, Physica A 391, 3657 (2012)], over flow time scales of order 10(2) and 10(4)L/Delta U, respectively (for N = 400). The final state involves a single structure that stochastically samples the domain, possibly constituting a ``relative equilibrium.'' The vortex distribution within the structure follows a nonisotropic truncated form of the Lundgren-Pointin (L-P) equilibrium distribution (with negatively high temperatures; L-P parameter lambda close to -1). The central finding is that, in the intermediate Regime II, the spreading rate of the layer is universal over the wide range of cases considered here. The value (in terms of momentum thickness) is 0.0166 +/- 0.0002 times Delta U. Regime II, extensively studied in the turbulent shear flow literature as a self-similar ``equilibrium'' state, is, however, a part of the rapid nonequilibrium evolution of the vortex-gas system, which we term ``explosive'' as it lasts less than one L/Delta U. Regime II also exhibits significant values of N-independent two-vortex correlations, indicating that current kinetic theories that neglect correlations or consider them as O(1/N) cannot describe this regime. The evolution of the layer thickness in present simulations in Regimes I and II agree with the experimental observations of spatially evolving (3D Navier-Stokes) shear layers. Further, the vorticity-stream-function relations in Regime III are close to those computed in 2D Navier-Stokes temporal shear layers J. Sommeria, C. Staquet, and R. Robert, J. Fluid Mech. 233, 661 (1991)]. These findings suggest the dominance of what may be called the Kelvin-Biot-Savart mechanism in determining the growth of the free shear layer through large-scale momentum and vorticity dispersal.
Resumo:
Using the numerical device simulation we show that the relationship between the surface potentials along the channel in any double gate (DG) MOSFET remains invariant in QS (quasistatic) and NQS (nonquasi-static) condition for the same terminal voltages. This concept along with the recently proposed `piecewise charge linearization' technique is then used to develop the intrinsic NQS charge model for a Independent DG (IDG) MOSFET by solving the governing continuity equation. It is also demonstrated that unlike the usual MOSFET transcapacitances, the inter-gate transcapacitance of a IDG-MOSFET initially increases with the frequency and then saturates, which might find novel analog circuit application. The proposed NQS model shows good agreement with numerical device simulations and appears to be useful for efficient circuit simulation.
Resumo:
The healing times for the growth of thin films on patterned substrates are studied using simulations of two discrete models of surface growth: the Family model and the Das Sarma-Tamborenea (DT) model. The healing time, defined as the time at which the characteristics of the growing interface are ``healed'' to those obtained in growth on a flat substrate, is determined via the study of the nearest-neighbor height difference correlation function. Two different initial patterns are considered in this work: a relatively smooth tent-shaped triangular substrate and an atomically rough substrate with singlesite pillars or grooves. We find that the healing time of the Family and DT models on aL x L triangular substrate is proportional to L-z, where z is the dynamical exponent of the models. For the Family model, we also analyze theoretically, using a continuum description based on the linear Edwards-Wilkinson equation, the time evolution of the nearest-neighbor height difference correlation function in this system. The correlation functions obtained from continuum theory and simulation are found to be consistent with each other for the relatively smooth triangular substrate. For substrates with periodic and random distributions of pillars or grooves of varying size, the healing time is found to increase linearly with the height (depth) of pillars (grooves). We show explicitly that the simulation data for the Family model grown on a substrate with pillars or grooves do not agree with results of a calculation based on the continuum Edwards-Wilkinson equation. This result implies that a continuum description does not work when the initial pattern is atomically rough. The observed dependence of the healing time on the substrate size and the initial height (depth) of pillars (grooves) can be understood from the details of the diffusion rule of the atomistic model. The healing time of both models for pillars is larger than that for grooves with depth equal to the height of the pillars. The calculated healing time for both Family and DT models is found to depend on how the pillars and grooves are distributed over the substrate. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We propose an analytic perturbative scheme in the spirit of Lord Rayleigh's work for determining the eigenvalues of the Helmholtz equation in three dimensions inside an arbitrary boundary where the eigenfunction satisfies either the Dirichlet boundary condition or the Neumann boundary condition. Although numerous works are available in the literature for arbitrary boundaries in two dimensions, to the best of our knowledge the formulation in three dimensions is proposed for the first time. In this novel prescription, we have expanded the arbitrary boundary in terms of spherical harmonics about an equivalent sphere and obtained perturbative closed-form solutions at each order for the problem in terms of corrections to the equivalent spherical boundary for both the boundary conditions. This formulation is in parallel with the standard time-independent Rayleigh-Schrodinger perturbation theory. The efficacy of the method is tested by comparing the perturbative values against the numerically calculated eigenvalues for spheroidal, superegg and superquadric shaped boundaries. It is shown that this perturbation works quite well even for wide departure from spherical shape and for higher excited states too. We believe this formulation would find applications in the field of quantum dots and acoustical cavities.