227 resultados para DOUBLY EXCITED-STATES
Resumo:
We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.
Resumo:
Qualitative potential energy surfaces for hydrogen abstraction from alkanes containing primary, secondary and tertiary C-H bonds by a photo-excited ketone have been reported, The results suggest that the activation barriers for these processes decrease in the order primary > secondary > tertiary in agreement with the observed trend in the rate constants. The analysis of the electronic structure of the transition-state reveal that electron-transfer from hydrocarbon to ketone and formation of a new bond are almost synchronous in the hydrogen transfer process. The tunneling of hydrogen is not important in the normal temperature region even though the barriers are small.
Resumo:
We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).
Resumo:
In this paper time-resolved resonance Raman (TR3) spectra of intermediates generated by proton induced electron-transfer reaction between triplet 2-methoxynaphthalene ((ROMe)-R-3) and decafluorobenzophenone (DFBP) are presented The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe+) have been analyzed by density functional theory (DFT) calculation It is observed that the structure of naphthalene ring of ROMe+ deviates from the structure of cation radical of naphthalene
Resumo:
The quenching of fluorescence of the free-base tetraphenylporphyrin, H2TPP, and its metal derivatives, MgTPP and ZnTPP by diverse iron(III) complexes, [Fe(CN)6]3−, Fe(acac)3, [Fe(mnt)2]−, Fe(Salen)Cl, [Fe4S4(SPh)4]2−·, FeTPPCl and [Fe(Cp)2]+ has been studied both in homogeneous medium (CH3CN) and micellar media, SDS., CTAB and Triton X-100. The quenching efficiencies are analysed in terms of diffusional encounters and it has been possible to separate static quenching components. The quenching constants are dependent on the nature of the ligating atoms around iron(III) and also on the extent of π-conjugation of the ligands. The quenching mechanism has been investigated using steady-state irradiation experiments. Evidence for oxidative quenching by iron(III) complexes was obtained, though the spin multiplicities of the excited electronic states of iron(III) complexes permit both energy and electron transfer mechanisms for quenching of the singlet excited state of the porphyrins.
Resumo:
We observe a sharp feature in the ultra-low-temperature magnetoconductivity of degenerately doped Ge:Sb at H∼25 kOe, which is robust up to at least three times the critical density for the insulator-metal transition. This field corresponds to a low-energy scale characteristic of the special nature of antimony donors in germanium. Its presence and sensitivity to uniaxial stress confirm the notion of metallic impurity bands in doped germanium.
Resumo:
In benzene solution, C60 and C70 interact weakly in the ground state with amines having favourable oxidation potentials. Picosecond time-resolved absorption measurements show that on photoexcilation, the weak complexes undergo charge separation to produce ion pairs which in turn undergo fast geminate recombination either to produce the triplet state of the fullerenes or give back the ground slate of the complex, depending on the oxidation potential of the amine. Free-ion yield is generally negligible.
Resumo:
We report a comparative modified neglect of diatomic overlap (MNDO), Austin method one (AM1), and parametric method 3 (PM3) study of trans‐stilbene (tS) in its ground, excited (singlet and triplet), and ionic (positive and negative polarons and bipolarons) states. We have also calculated the barrier for ring rotation about the backbone single bond. Our results show that PM3 geometries are superior to MNDO and AM1, at least for tS. PM3 predicts, in contrast with MNDO, AM1 and even ab initio 3‐21G, a coplanar structure for tS, in accordance with recent experimental data. Singlet and triplet energies obtained from heats of formation are in surprisingly good agreement with experimental data.
Resumo:
Multiband Hubbard and Pariser-Parr-Pople calculations have been carried out on mixed donor-acceptor (DA) stacks with doubly degenerate acceptor orbitals and nondegenerate donor orbitals at two-thirds filling. Model exact results for 2, 3, and 4 DA units show that McConnell's prediction of high-spin ground states in these systems is, in general, incorrect. The larger phase space available for the low-spin states leads to their kinetic stabilization in preference to high-spin states. However, for large electron-correlation strengths, the direct exchange dominates over the kinetic exchange resulting in a high-spin ground state
Resumo:
The π-electronic excitations and excited-state geometries of trans-stilbene (tS) are found by combining exact solutions of the Pariser-Parr-Pople (PPP) model and semiempirical Parametric Method 3 (PM3) calculations. Comprehensive comparisons with tS spectra are obtained and related to the fluorescence and topological alternation of poly(paraphenylenevinylene) (PPV). The one-photon absorption and triplet of tS correspond, respectively, to singlet and triplet bipolarons confined to two phenyls, while the tS2- ground state is a confined charged bipolaron. Independent estimates of the relaxation energy between vertical and adiabatic excitation show the bipolaron binding energy to depend on both charge and spin, as expected for interacting π electrons in correlated or molecular states. Complete configuration interaction within the PPP model of tS accounts for the singlet-triplet gap, for the fine-structure constants and triplet-triplet spectra, for two-photon transitions and intensities, and for one-photon spectra and the radiative lifetime, although the relative position of nearly degenerate covalent and ionic singlets is not resolved. The planar PM3 geometry and low rotational barrier of tS agree with resolved rotational and vibrational spectra in molecular beams. PM3 excitation and relaxation energies for tS bipolarons are consistent with experiment and with PPP results. Instead of the exciton model, we interpret tS excitations in terms of states that are localized on each ring or extended over an alternating chain, as found exactly in Hückel theory, and find nearly degenerate transitions between extended and localized states in the singlet, triplet, and dianion manifolds. The large topological alternation of the extended system increases the ionicity and interchanges the order of the lowest one- and two-photon absorption of PPV relative to polyenes.
Resumo:
NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.