310 resultados para DNA-Methylation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uracil DNA glycosylase (Ung)initiates the uracil excision repair pathway. We have earlier characterized the Y66W and Y66H mutants of Ung and shown that they are compromised by similar to 7- and similar to 170-fold, respectively in their uracil excision activities. In this study, fluorescence anisotropy measurements show that compared with the wild-type, the Y66W protein is moderately compromised and attenuated in binding to AP-DNA. Allelic exchange of ung in Escherichia coli with ung::kan, ungY66H:amp or ungY66W:amp alleles showed similar to 5-, similar to 3.0- and similar to 2.0-fold, respectively increase in mutation frequencies. Analysis of mutations in the rifampicin resistance determining region of rpoB revealed that the Y66W allele resulted in an increase in A to G (or T to C) mutations. However, the increase in A to G mutations was mitigated upon expression of wild-type Ung from a plasmid borne gene. Biochemical and computational analyses showed that the Y66W mutant maintains strict specificity for uracil excision from DNA. Interestingly, a strain deficient in AP-endonucleases also showed an increase in A to G mutations. We discuss these findings in the context of a proposal that the residency of DNA glycosylase(s) onto the AP-sites they generate shields them until recruitment of AP-endonucleases for further repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we address the fundamental issue of temperature fluctuation during the thermal denaturation (or the unzipping of the two strands on heating) of double stranded (ds) DNA. From our experiments we observe the presence of extremely high thermal fluctuations during DNA denaturation. This thermal fluctuation is several orders higher than the thermal fluctuation at temperatures away from the denaturation temperature range. This fluctuation is absent in single stranded (ss) DNA. The magnitude of fluctuation is much higher in heteropolymeric DNA and is almost absent in short homopolymeric DNA fragments. The temperature range over which the denaturation occurs (i.e., over which the thermal fluctuation is large) depends on the length of the DNA and is largest for the longest DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA sequences containing a stretch of several A:T basepairs without a 5'-TA-3' step are known as A-tracts and have been the subject of extensive investigation because of their unique structural features such as a narrow minor groove and their crucial role in several biological processes. One of the aspects under investigation has been the influence of the 5-methyl group of thymine on the properties of A-tracts. Detailed molecular dynamics simulation studies of the sequences d(CGCAAAUUUGCG) and d(CGCAAATTTGCG) indicate that the presence of the 5-methyl group in thymine increases the frequency of a narrow minor groove conformation, which could facilitate its specific recognition by proteins, and reduce its susceptibility to cleavage by DNase I. The bias toward a wider minor groove in the absence of the thymine 5-methyl group is a static structural feature. Our results also indicate that the presence of the thymine 5-methyl group is necessary for calibrating the backbone conformation and the basepair and dinucleotide step geometry of the core A-tract as well as the flanking CA/TG and the neighboring GC/GC steps, as observed in free and protein-bound DNA. As a consequence, it also fine-tunes the curvature of the longer DNA fragment in which the A-tract is embedded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lanthanide complexes of formulation [La(B)(2)(NO3)(3)] (1-3) and [Gd(B)(2)(NO3)(3)] (4-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 4),dipyrido[3,2-d2',3'-f]quinoxaline (dpq in 2,5) and dipyrido[3,2-a2',3'-c]phenazine (dppz in 3, 6), have been prepared, characterized from physicochemical data, and their photoinduced DNA and protein cleavage activity studied The photocytotoxicity of the dppz complexes 3 and 6 has been studied using HeLa cancer cells. The complexes exhibitligand centered bands in the UV region The dppz complexes show thelowest energy band at 380 nm in N,N-dimethylformamide (DMF) The La(III)complexes are diamagnetic. The Gd(III) complexes (4-6) have magneticmoments that correspond to seven unpaired electrons The complexes are1(.)1 electrolytic in aqueous DMF The dpq and dppz complexes in DMFshow ligand-based reductions. The complexes display moderate binding propensity to calf thymus DNA giving binding constant values in the range of 5.7 x 10(4)-5.8 x 10(5) M-1 with a relative order. 3, 6 (dppz)> 2, 5 (dpq) > 1, 4 (phen) The binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes do not show any hydrolytic cleavage of plasmid supercoiled pUC19 DNA. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form onexposure to UV-A light of 365 nm at nanomolar complex concentration. Mechanistic studies reveal the involvement of singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) as the cleavage active species.The complexes show binding propensity to bovine serum albumin (BSA)protein giving K-BSA values of similar to 10(5) M-1. The dppz complexes 3 and 6 show BSA protein cleavage activity in UV-A light of 365 nm The dppz complexes 3 and 6 exhibit significant photocytotoxicity in HeLa cells giving respective IC50 values of 341 nM and 573 nM in UV-A light of 365 nm for an exposure time of 15 min (IC50 > 100 mu M in dark for both the complexes) Control experiments show significant dark and phototoxicity of the dppz base alone (IC50 = 413 nM in light with 4 h incubation in dark and 116 mu M in dark with 24 h incubation). A significant decrease in the dark toxicity of the dppz base is observedon binding to the lanthanide ions while retaining similar phototoxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose “C(d)C(S)C(S)” (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an similar to 60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix ( bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DNA helicases are present in all kingdoms of life and play crucial roles in processes of DNA metabolism such as replication, repair, recombination, and transcription. To date, however, the role of DNA helicases during homologous recombination in mycobacteria remains unknown. In this study, we show that Mycobacterium tuberculosis UvrD1 more efficiently inhibited the strand exchange promoted by its cognate RecA, compared to noncognate Mycobacterium smegmatis or Escherichia coli RecA proteins. The M. tuberculosis UvrD1(Q276R) mutant lacking the helicase and ATPase activities was able to block strand exchange promoted by mycobacterial RecA proteins but not of E. coil RecA. We observed that M. tuberculosis UvrA by itself has no discernible effect on strand exchange promoted by E. coli RecA but impedes the reaction catalyzed by the mycobacterial RecA proteins. Our data also show that M. tuberculosis UvrA and UvrD1 can act together to inhibit strand exchange promoted by mycobacterial RecA proteins. Taken together, these findings raise the possibility that UvrD1 and UvrA might act together in vivo to counter the deleterious effects of RecA nucleoprotein filaments and/or facilitate the dissolution of recombination intermediates. Finally, we provide direct experimental evidence for a physical interaction between M. tuberculosis UvrD1 and RecA on one hand and RecA and UvrA on the other hand. These observations are consistent with a molecular mechanism, whereby M. tuberculosis UvrA and UvrD1, acting together, block DNA strand exchange promoted by cognate and noncognate RecA proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tau is mainly distributed in cytoplasm and also found to be localized in the nucleus. There is limited data on DNA binding potential of Tau.We provide novel evidence on nicking of DNA by Tau. Tau nicks the supercoiled DNA leading to open circular and linear forms. The metal ion magnesium (a co-factor for endonuclease) enhanced the Tau DNA nicking ability, while an endonuclease specific inhibitor,aurinetricarboxylic acid (ATA) inhibited the Tau DNA nicking ability Further, we also evidenced that Tau induces B-C-A mixed conformational transition in DNA and also changes DNA stability. Tau-scDNA complex is more sensitive to DNAse I digestion indicating stability changes in DNA caused by Tau. These findings indicate that Tau alters DNA helicity and integrity and also nicks the DNA. The relevance of these novel intriguing findings regarding the role Tau in neuronal dysfunction is discussed. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of the DNA binding nonintercalators Netropsin, Distamycin and the mPD derivative with Z-DNA has been studied. It has been found that environmental factors like the solvent and added cations significantly modulate the interaction of these ligands with Z-DNA. However no definite Z to B transition in presence of these ligands was found in any case, in contrast to previously reported results (Ch. Zimmer, C. Marck and W. Guschlbauer, FEBS Lett. 154, 156-160 (1983)).