279 resultados para DIFFUSION MARKER EXPERIMENTS
Resumo:
Electrodeposited nanocrystalline Ni films were processed with different levels of S, to evaluate the role of S on superplasticity. All the materials exhibited high strain rate superplasticity at a relatively low temperature of 777 K. Microstructural characterization revealed that the S was converted to a Ni3S2 phase which melts at 908 K; no S could be detected at grain boundaries. There was no consistent variation in ductility with S content. Superplasticity was associated with a strain rate sensitivity of similar to 0.8 and an inverse grain size exponent of similar to 1 both of which are unusual observations in superplastic flow of metals. Based on the detailed experiments and analysis, it is concluded that superplasticity in nano-Ni is related to an interface controlled diffusion creep process, and it is not related to the presence of S at grain boundaries or a liquid phase at grain boundaries. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Solid state reactive diffusion in binary Au-Sn system has been studied using the diffusion couple consisting of pure elements Au and Sn annealed in the temperature range of 180-100 degrees C for 25 h Interdiffusion zone consists of four intermetallic phases Au5Sn, AuSn, AuSn2, and AuSn4 Activation energy for parabolic growth constant and integrated diffusivity for each phase has been calculated to indicate about the possible mechanism for diffusion controlled growth process Parabolic growth constant of individual phases has also been compared Kirkendall marker plane position has been indicated in the interdiffusion zone and furthermore the ratio of intrinsic diffusivities of species has also been determined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
In the present work the integral diffusion coefficients are estimated by using the diaphragm cell technique. The diffusion coefficients are measured at various compositions for two sets binary systems: one of cyclohexane and n-paraffinic alcohols and the other of methylcyclohexane and n-paraffinic alcohols. The alcohols used are seven members of homologous series of n-paraffinic alcohols from ethanol to octanol. The maximum possible error in the experimental diffusion coefficient could be 8% for both the cyclohexane-n-alkyl alcohol system and methylcyclohexane-n-alkyl alcohol system. A correlation for each of the two sets of binary systems is given. The maximum deviation in the correlations was less than 6.5 and 3.5% for cyclohexane-n-alkyl alcohols and methylcyclohexane-n-alkyl alcohols, respectively.
Resumo:
The effect of dipolar cross correlation in 1H---1H nuclear Overhauser effect experiments is investigated by detailed calculation in an ABX spin system. It is found that in weakly coupled spin systems, the cross-correlation effects are limited to single-quantum transition probabilities and decrease in magnitude as ωτc increases. Strong coupling, however, mixes the states and the cross correlations affect the zero-quantum and double-quantum transition probabilities as well. The effect of cross correlation in steady-state and transient NOE experiments is studied as a function of strong coupling and ωτc. The results for steady-state NOE experiments are calculated analytically and those for transient NOE experiments are calculated numerically. The NOE values for the A and B spins have been calculated by assuming nonselective perturbation of all the transitions of the X spin. A significant effect of cross correlation is found in transient NOE experiments of weakly as well as strongly coupled spins when the multiplets are resolved. Cross correlation manifests itself largely as a multiplet effect in the transient NOE of weakly coupled spins for nonselective perturbation of all X transitions. This effect disappears for a measuring pulse of 90° or when the multiplets are not resolved. For steady-state experiments, the effect of cross correlation is analytically zero for weakly coupled spins and small for strongly coupled spins.
Resumo:
Hyper-redundant robots are characterized by the presence of a large number of actuated joints, many more than the number required to perform a given task. These robots have been proposed and used for many applications involving avoiding obstacles or, in general, to provide enhanced dexterity in performing tasks. Making effective use of the extra degrees of freedom or resolution of redundancy has been an extensive topic of research and several methods have been proposed in literature. In this paper, we compare three known methods and show that an algorithm based on a classical curve called the tractrix leads to a more 'natural' motion of the hyper-redundant robot, with the displacements diminishing from the end-effector to the fixed base. In addition, since the actuators nearer the base 'see' a greater inertia due to the links farther away, smaller motion of the actuators nearer the base results in better motion of the end-effector as compared to other two approaches. We present simulation and experimental results performed on a prototype eight link planar hyper-redundant manipulator.
Resumo:
The mutual diffusion coefficients for binary liquid systems of benzene-n-alkyl alcohol at various compositions have been determined by the diaphragm cell method at 28-degrees-C. The alcohols used were the members of n-paraffinic alcohols ranging from C1 to C8. The maximum possible experimental error is 14%. The data were fitted with a generalized correlation, giving the deviation from the experimental data to within 2.75%, on average.
Resumo:
Measurements of impurity diffusion of 86Rb, 90Sr, 133Ba, and 137Cs in single crystal Bi were carried out. Diffusion samples were prepared from single crystal Bi by ion implantation. About 1012-1013 ions were implanted, resulting in surface activities approx =104 cpm. After implantation, specimens were annealed for specified times at 220-265 deg C, and tracer penetration profiles were determined by an electrolytic method. A typical penetration profile for 137Cs in Bi showed a linear relationship for log C vs x in with Fick's law for volume diffusion. Laws of grain boundary diffusion were not obeyed and the order of magnitude of the penetration distances was much less than on a grain boundary mechanism. Results were interpreted in terms of a modified Fischer analysis using a kinetic trapping term. Effective half lengths for trapping at a twin boundary were determined for each impurity.
Resumo:
Friction plays an important role in metal forming processes, and the surface texture of the die is a major factor that influences friction. In the present investigation, experiments were conducted to understand the role of surface texture of the harder die surface and load on coefficient of friction. The data analysis showed that the coefficient of friction is highly dependent on the surface texture of the die surface. Assigning different magnitude of coefficients of friction, obtained in the experiments, at different regions between the die and the workpiece, Finite element (FE) simulation of a compression test was carried out to understand the effect of friction on deformation and stress/strain-rate distribution. Simulation results revealed that, owing to the difference in coefficient of friction, there is a change in metal flow pattern. Both experimental and simulation results confirmed that the surface texture of the die surface and thus coefficient of friction directly affects the strain rate and flow pattern of the workpiece.
Resumo:
Molecular dynamics simulations on Xe in NaY and Ar in NaCaA zeolite are reported. Rates of cage-to-cage crossovers in the two zeolites exhibit trends which are contrary to that expected from geometrical considerations. The results suggest the important role of the sorbate-zeolite interactions in determining the molecular sieve properties of zeolites for small sized sorbates. The results are explained in terms of the barrier height for cage-to-cage crossover in the two zeolites.
Resumo:
An associative memory with parallel architecture is presented. The neurons are modelled by perceptrons having only binary, rather than continuous valued input. To store m elements each having n features, m neurons each with n connections are needed. The n features are coded as an n-bit binary vector. The weights of the n connections that store the n features of an element has only two values -1 and 1 corresponding to the absence or presence of a feature. This makes the learning very simple and straightforward. For an input corrupted by binary noise, the associative memory indicates the element that is closest (in terms of Hamming distance) to the noisy input. In the case where the noisy input is equidistant from two or more stored vectors, the associative memory indicates two or more elements simultaneously. From some simple experiments performed on the human memory and also on the associative memory, it can be concluded that the associative memory presented in this paper is in some respect more akin to a human memory than a Hopfield model.
Resumo:
Detailed molecular dynamics simulations of argon in zeolite NaCaA are reported. Thermodynamic, structural, and dynamical properties of the sorbate as a function of temperature have been obtained. The properties calculated include various site-site radial distribution functions, different energy distribution functions, selfdiffusion coefficients, the power spectra, and properties relating to cage-to-cage diffusion. The results suggest that sorbate is delocalized above 300 K. Both modes of cage-to-cage diffusion-the surface-mediated and centralized diffusion-are associated with negative barrier heights. Surprisingly, rate of cage-to-cage diffusion is associated with negative and positive activation energies below and above 500 K. The observed differences in the behavior of the rate of cage-to-cage diffusion between Xe-NaY and Ar-NaCaA systems and the nature of the potential energy surface are discussed. Presence of sorbatezeolite interactions results in significant enhancement in the rate of cage-to-cage diffusion and rate of cage visits. It is shown that properties dependent on the long-time behavior such as the diffusion coefficient and the rate of cages visited exhibit the expected Arrhenius dependence on temperature.
Resumo:
The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved.