171 resultados para Critical forces


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protozoan parasite Entamoeba histolytica can invade both intestinal and extra intestinal tissues resulting in amoebiasis. During the process of invasion E. histolytica ingests red blood and host cells using phagocytic processes. Though phagocytosis is considered to be a key virulence determinant, the mechanism is not very well understood in E. histolytica. We have recently demonstrated that a novel C2 domain-containing protein kinase, EhC2PK is involved in the initiation of erythrophagocytosis. Because cells overexpressing the kinase-dead mutant of EhC2PK displayed a reduction in erythrophagocytosis, it appears that kinase activity is necessary for initiation. Biochemical analysis showed that EhC2PK is an unusual Mn2+-dependent serine kinase. It has a trans-autophosphorylated site at Ser(428) as revealed by mass spectrometric and biochemical analysis. The autophosphorylation defective mutants (S428A, KD Delta C) showed a reduction in auto and substrate phosphorylation. Time kinetics of in vitro kinase activity suggested two phases, an initial short slow phase followed by a rapid phase for wild type protein, whereas mutations in the autophosphorylation sites that cause defect (S428A) or conferred phosphomimetic property (S428E) displayed no distinct phases, suggesting that autophosphorylation may be controlling kinase activity through an autocatalytic mechanism. A reduction and delay in erythrophagocytosis was observed in E. histolytica cells overexpressing S428A and KD Delta C proteins. These results indicate that enrichment of EhC2PK at the site of phagocytosis enhances the rate of trans-autophosphorylation, thereby increasing kinase activity and regulating the initiation of erythrophagocytosis in E. histolytica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report unusual jamming in driven ordered vortex flow in 2H-NbS2. Reinitiating movement in these jammed vortices with a higher driving force and halting it thereafter once again with a reduction in drive leads to a critical behavior centered around the depinning threshold via divergences in the lifetimes of transient states, validating the predictions of a recent simulation study Reichhardt and Olson Reichhardt, Phys. Rev. Lett. 103, 168301 (2009)] which also pointed out a correspondence between plastic depinning in vortex matter and the notion of random organization proposed Corte et al., Nat. Phys. 4, 420 (2008)] in the context of sheared colloids undergoing diffusive motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), tetradecyltrimehtylammonium bromide (TTAB) and hexadecyltrimethylammonium bromide (HTAB); and anionic surfactants such as sodium decyl sulphate (SDeS), sodium dodecyl sulphate (SDS) and sodium tetradecyl sulphate (STDS) have been used to determine their solubility and micellization in ternary eutectic melt (acetamide + urea + ammonium nitrate) at 50 degrees C. We employed the electrical conductivity and the surface tension measurement techniques to determine the critical micelle concentration (CMC). The deviation in the slope of the specific conductance/surface tension against surfactant concentration plots indicated the aggregations of surfactants and hence, their CMC. CMC decreases with increase of alkyl chain length due to the increased van der Waals forces. The calculated increment in Gibb's energy per methylene group for cationic and anionic surfactants is about -6 kJ mol(-1) and -4 kJ mol(-1) respectively. It is found that, the CMCs of the surfactants in the ternary melt are higher than the CMCs of same surfactants in water (similar to 25 degrees C). (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider counterterms for odd dimensional holographic conformal field theories (CFTs). These counterterms are derived by demanding cutoff independence of the CFT partition function on S-d and S-1 x Sd-1. The same choice of counterterms leads to a cutoff independent Schwarzschild black hole entropy. When treated as independent actions, these counterterm actions resemble critical theories of gravity, i.e., higher curvature gravity theories where the additional massive spin-2 modes become massless. Equivalently, in the context of AdS/CFT, these are theories where at least one of the central charges associated with the trace anomaly vanishes. Connections between these theories and logarithmic CFTs are discussed. For a specific choice of parameters, the theories arising from counterterms are nondynamical and resemble a Dirac-Born-Infeld generalization of gravity. For even dimensional CFTs, analogous counterterms cancel log-independent cutoff dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online remote visualization and steering of critical weather applications like cyclone tracking are essential for effective and timely analysis by geographically distributed climate science community. A steering framework for controlling the high-performance simulations of critical weather events needs to take into account both the steering inputs of the scientists and the criticality needs of the application including minimum progress rate of simulations and continuous visualization of significant events. In this work, we have developed an integrated user-driven and automated steering framework INST for simulations, online remote visualization, and analysis for critical weather applications. INST provides the user control over various application parameters including region of interest, resolution of simulation, and frequency of data for visualization. Unlike existing efforts, our framework considers both the steering inputs and the criticality of the application, namely, the minimum progress rate needed for the application, and various resource constraints including storage space and network bandwidth to decide the best possible parameter values for simulations and visualization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called `early warning signals', and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density distribution, fluid structure and solvation forces for fluids confined in Janus slit-shaped pores are investigated using grand canonical Monte Carlo simulations. By varying the degree of asymmetry between the two smooth surfaces that make up the slit pores, a wide variety of adsorption situations are observed. The presence of one moderately attractive surface in the asymmetric pore is sufficient to disrupt the formation of frozen phases observed in the symmetric case. In the extreme case of asymmetry in which one wall is repulsive, the pore fluid can consist of a frozen contact layer at the attractive surface for smaller surface separations (H) or a frozen contact layer with liquid-like and gas-like regions as the pore width is increased. The superposition approximation, wherein the solvation pressure and number density in the asymmetric pores can be obtained from the results on symmetric pores, is found to be accurate for H > 4 sigma(ff), where sigma(ff) is the Lennard-Jones fluid diameter and within 10% accuracy for smaller surface separations. Our study has implications in controlling stick slip and overcoming static friction `stiction' in micro and nanofluidic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Notch signalling pathway is implicated in a wide variety of cellular processes throughout metazoan development. Although the downstream mechanism of Notch signalling has been extensively studied, the details of its ligand-mediated receptor activation are not clearly understood. Although the role of Notch ELRs EGF (epidermal growth factor)-like-repeats] 11-12 in ligand binding is known, recent studies have suggested interactions within different ELRs of the Notch receptor whose significance remains to be understood. Here, we report critical inter-domain interactions between human Notch1 ELRs 21-30 and the ELRs 11-15 that are modulated by calcium. Surface plasmon resonance analysis revealed that the interaction between ELRs 21-30 and ELRs 11-15 is similar to 10-fold stronger than that between ELRs 11-15 and the ligands. Although there was no interaction between Notch 1 ELRs 21-30 and the ligands in vitro, addition of pre-clustered Jagged1Fc resulted in the dissociation of the preformed complex between ELRs 21-30 and 11-15, suggesting that inter-domain interactions compete for ligand binding. Furthermore, the antibodies against ELRs 21-30 inhibited ligand binding to the full-length Notch1 and subsequent receptor activation, with the antibodies against ELRs 25-26 being the most effective. These results suggest that the ELRs 25-26 represent a cryptic ligand-binding site which becomes exposed only upon the presence of the ligand. Thus, using specific antibodies against various domains of the Notch1 receptor, we demonstrate that, although ELRs 11-12 are the principal ligand-binding site, the ELRs 25-26 serve as a secondary binding site and play an important role in receptor activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online remote visualization and steering of critical weather applications like cyclone tracking are essential for effective and timely analysis by geographically distributed climate science community. A steering framework for controlling the high-performance simulations of critical weather events needs to take into account both the steering inputs of the scientists and the criticality needs of the application including minimum progress rate of simulations and continuous visualization of significant events. In this work, we have developed an integrated user-driven and automated steering framework InSt for simulations, online remote visualization, and analysis for critical weather applications. InSt provides the user control over various application parameters including region of interest, resolution of simulation, and frequency of data for visualization. Unlike existing efforts, our framework considers both the steering inputs and the criticality of the application, namely, the minimum progress rate needed for the application, and various resource constraints including storage space and network bandwidth to decide the best possible parameter values for simulations and visualization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the lower-bound finite element limit analysis, the stability of a long unsupported circular tunnel has been examined with an inclusion of seismic body forces. The numerical results have been presented in terms of a non-dimensional stability number (gamma H/c) which is plotted as a function of horizontal seismic earth pressure coefficient (k (h)) for different combinations of H/D and I center dot; where (1) H is the depth of the crest of the tunnel from ground surface, (2) D is the diameter of the tunnel, (3) k (h) is the earthquake acceleration coefficient and (4) gamma, c and I center dot define unit weight, cohesion and internal friction angle of soil mass, respectively. The stability numbers have been found to decrease continuously with an increase in k (h). With an inclusion of k (h), the plastic zone around the periphery of the tunnel becomes asymmetric. As compared to the results reported in the literature, the present analysis provides a little lower estimate of the stability numbers. The numerical results obtained would be useful for examining the stability of unsupported tunnel under seismic forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic saw effect, induced by the Lorentz force generated due to the application of a series of electromagnetic ( EM) pulses, can be utilized to cut a metallic component containing a pre-existing cut or crack. By combining a mechanical force with the Lorentz force, the cut can be propagated along any arbitrary direction in a controlled fashion, thus producing an `electromagnetic jigsaw', yielding a novel tool-less, free-formed manufacturing process, particularly suitable for hard-to-cut metals. This paper presents validation of the above concept based on a simple analytical model, along with experiments on two materials - Pb foil and steel plate. (C) 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of Professor Bert Lauwers