253 resultados para Copper Ore
Resumo:
Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.
Resumo:
Mining and blending operations in the high grade iron ore deposit under study are performed to optimize recovery with minimal alumina content while maintaining required levels of other chemical component and a proper mix of ore types. In the present work the regionalisation of alumina in the ores has been studied independently and its effects on global and local recoverable tonnage as well as on alternatives of mining operations have been evaluated. The global tonnage recovery curves for blocks (20m x 20m x 12m) obtained by simulation closely approximated the curves obtained theoretically using a change of support under the discretised gaussian model. Variations in block size up to 80m x 20m x 12m did not affect the recovery as the horizontal dimensions of the blocks are small in relation to the range of the variogram. A comparison of the local tonnage recovery curves obtained through multiple conditional simulations made with that obtained by the method of uniform conditioning of block grades on an estimate of panel 100m x 100m x 12m panel grade reveals comparable results only in panels which have been well conditioned and possesing an ensemble simulation mean close to the ordinary kriged value for the panel. Study of simple alternative sequence of mining on the conditionally simulated deposit shows that concentration of mining operations simultaneously on a single bench enhances the fluctuation in alumina values of ore mined.
Phase relations and thermodynamic properties of condensed phases in the system calcium-copper-oxygen
Resumo:
The isothermal sections of the phase diagram for the system Ca-Cu-0 at 1073 and 1223 K have been determined. Several compositions in the ternary system were quenched after equilibration, and the phases present were identified by optical microscopy, X-ray diffraction, and electron probe microanalysis. Two ternary compounds Ca2CuO3 and Cao.8&uO1.9s were identified at 1073 K. However, only Ca2CuO3 was found to be stable at 1223 K. The thermodynamic properties of the two ternary compounds were determined using solid-state cells incorporating either an oxide or a fluoride solid electrolyte. The results for both types of cells were internally consistent. The compound C ~ O . ~ & U Ow~h.i~ch~ c, a n also be represented as Ca15Cu18035h, as been identified in an earlier investigation as Cao.828CuOz. Using a novel variation of the galvanic cell technique, in which the emf of a cell incorporating a fluoride electrolyte is measured as a function of the oxygen potential of the gas phase in equilibrium with the condensed phase electrodes, it has been confirmed that the compound Cao.828CuO1.93 (Ca15Cu18035d) oes not have significant oxygen nonstoichiometry. Phase relations have been deduced from the thermodynamic data as a function of the partial pressure of oxygen for the system Ca-Cu-0 at 873, 1073, and 1223 K.
Resumo:
The preparation of five different copper(I) complexes [CuSC(=NPh)(OAr)}L(n)]m (1-5) formed by the insertion of PhNCS into the Cu-OAr bond and the crystal structure analyses of three of them have been carried out. A monomeric species 1 (OAr = 2,6-dimethylphenoxide) is formed in the presence of excess PPh3 (n = 2, m = 1) and crystallizes as triclinic crystals with a = 12.419(4) angstrom, b = 13.298(7) angstrom, c = 15.936(3) angstrom, alpha = 67.09(3)-degrees, beta = 81.63(2)-degrees, gamma = 66.54(3)-degrees, V = 2224(2) angstrom3, and Z = 2. The structure was refined by the least-squares method to final R and R(w) values of 0.038 and 0.044, respectively, for 7186 unique reflections. Copper(I) 2,5-di-tert-butyl-4-methylphenoxide results in the formation of a dimeric species 2 in the presence of P(OMe)3 (n = 1, m = 2), where the coordination around Cu is trigonal. Crystals of 2 were found to be orthorhombic with a = 15.691(2) angstrom, b = 18.216(3) angstrom, c = 39.198(5) angstrom, v = 11204(3) angstrom3, and Z = 8. Least-squares refinement gave final residuals of R = 0.05 and R(w) = 0.057 with 6866 unique reflections. A tetrameric species 3 results when PPh3 is replaced by P(OMe)3 in the coordination sphere of copper(I) 2,6-dimethylphenoxide. It crystallizes in the space group P1BAR with a = 11.681 (1) angstrom, b = 13.373(2) angstrom, c = 20.127(1) angstrom, a = 88.55(l)-degrees, beta = 89.65(l)-degrees, gamma = 69.28(1)-degrees, V = 2940(l) angstrom3, and Z = 2. Least-squares refinement of the structure gave final values of 0.043 and 0.05 for R and R(w) respectively using 12214 unique reflections. In addition, a dimeric species 4 is formed when 1 equiv of PPh3 is added to the copper(I) 4-methylphenoxide, while with an excess of PPh3 a monomeric species 5 is isolated. Some interconversions among these complexes are also reported.
Resumo:
Mononuclear copper(II) complexes of tri- and tetra-dentate tripodal ligands containing phenolic hydroxyl and benzimidazole or pyridine groups have been isolated. They are of the type (CuL(X)].nH2O, [CuL(H2O)]X.nH2O or [CuL].nH2O where X = Cl-, ClO4-, N3- or NCS- and n = 0-4. The electronic spectra of all the complexes exhibit a broad absorption band around 14000 cm-1 and the polycrystalline as well as the frozen-solution EPR spectra are axial, indicating square-based geometries. The crystal structure of [CuL(Cl)] [HL = (2-hydroxy-5-nitrobenzyl)bis(2-pyridyl-methyl)amine] revealed a square-pyramidal geometry around Cu(II). The mononuclear complex crystallises in the triclinic space group P1BAR with a = 6.938(1), b = 11.782(6), c = 12.678(3) angstrom and alpha = 114.56(3), beta = 92.70(2), gamma = 95.36(2)-degrees. The co-ordination plane is comprised of one tertiary amine and two pyridine nitrogens and a chloride ion. The phenolate ion unusually occupies the axial site, possibly due to the electron-withdrawing p-nitro group. The enhanced pi delocalisation involving the p-nitrophenolate donor elevates the E1/2 values. The spectral and electrochemical results suggest the order of donor strength as nitrophenolate < pyridine < benzimidazole in the tridentate and nitrophenolate < benzimidazole < pyridine in the tetradentate ligand complexes.
Resumo:
Factors contributing to the variations in the Cu(I)-Cu(I) distances in two clusters with identical ligand and coordination geometries have been analyzed. While the hexamer, 4, exhibits metal-metal distances in the range 2.81-3.25 Angstrom, shorter contacts are found in the corresponding tetramer, 3 (2.60-2.77 Angstrom). EHT calculations reveal relatively little attractive interactions in the corresponding Cu-4(4+) and Cu-6(6+) cores. Introduction of the ligands lowers the reduced overlap populations between the metals further. MNDO calculations with model electrophiles have been carried out to determine the bite angle requirements of the ligands. These are satisfactorily met in the structures of both 3 and 4. The key geometric feature distinguishing 3 and 4 is the Cu-S-Cu angle involving the bridging S- unit. In 4, the corresponding angles are about 90 degrees, while the values in 3 are smaller (70-73 degrees). Wider angles are computed to be energetically favored and are characterized by an open three-center bond and a long Cu-Cu distance. The bridging angles are suggested to be primarily constrained by the mode of oligomerization. Implications of these results for the stability and reactivity of these clusters and for short metal-metal distances in d(10) systems in general are discussed.
Resumo:
A strain of Thiobacillus ferrooxidans MAL-4-1 was adapted to grow at higher concentrations of copper by repeated subculturing in the presence of increasing levels of added cupric ions in 9K medium. The strains adapted to copper were found to be more efficient in bioleaching of copper from concentrates. When copper tolerant strains were back cultured repeatedly in 9K medium without cupric ions, the initially developed metal tolerance was observed to be lost. This indicates that the copper tolerance developed is stress-dependent and not a permanent trait of the adapted strain.
Resumo:
Sparingly soluble neodymium copper oxalate (NCO) single crystals were grown by gel method, by the diffusion of a mixture of neodymium nitrate and cupric nitrate into the set gel containing oxalic acid. Tabular crystal, revealing well-defined dissolution figures has been recorded. X-ray diffraction studies of the powdered sample reveal that NCO is crystalline. Infrared absorption spectrum confirmed the formation of oxalato complex with water of crystallization, while energy dispersive X-ray analysis established the presence of neodymium dominant over copper in the sample. X-ray photoelectron spectroscopic studies established the presence of Nd and Cu in oxide states besides (C2O4)(2-) oxalate group. The intensities of Nd (3d(5/2)) and Cu (2p(3/2)) peaks measured in terms of maximum photoelectron count rates also revealed the presence of Nd in predominance. The inductively coupled plasma analysis supports the EDAX and XPS data by the estimation of neodymium percentage by weight to that of copper present in the NCO sample. On the basis of these findings, an empirical structure for NCO has been proposed. The implications are discussed.
Resumo:
The synthesis, X-ray crystal structure, and magnetic properties of an angular trinuclear copper(II) complex [Cu3(O2CMC)4(bpy)3(H2O)](PF6)2 (1), obtained from a reaction of Cu2(O2CMe)4(H2O)2 With 2,2'-bipyridine (bpy) and NH4PF6 in ethanol, are reported. Complex 1 crystallizes in triclinic space group P1BAR with a = 11.529(1) angstrom, b = 12.121(2) angstrom, c = 17.153(2) angstrom, alpha = 82.01(1)-degrees, beta = 79.42(1)-degrees, gamma = 89.62(1)-degrees, and Z = 2. A total of 6928 data with I > 2.5sigma(I) were refined to R = 0.0441 and R(w) = 0.0557. The structure consists of a trinuclear core bridged by four acetate ligands showing different bonding modes. The coordination geometry at each copper is distorted square-pyramidal with a CuN2O2...O chromophore. The Cu...Cu distances are 3.198(1) angstrom, 4.568(1) angstrom, and 6.277(1) angstrom. There are two monoatomic acetate bridges showing Cu-O-Cu angles of 93.1(1) and 97.5(1)-degrees. Magnetic studies in the temperature range 39-297 K show the presence of a strong ferromagnetically coupled dicopper(II) unit (2J = +158 cm-1) and an essentially isolated copper(II) center (2J' = -0.4 cm-1) in 1. The EPR spectra display an axial spectrum giving g(parallel-to) = 2.28 (A(parallel-to) = 160 X 10(-4) cm-1) and g(perpendicular-to) = 2.06 (A(perpendicular-to) = 12 X 10(-4) cm-1) for the normal copper and two intense isotropic signals with g values 2.70 and 1.74 for the strongly coupled copper pair. The structural features of 1 compare well with the first generation models for ascorbate oxidase.
Resumo:
A high-throughput screening was employed to identify new compounds in Cu(CH3COO)(2)center dot H2O-NIPA-heterocyclic ligand systems. Of the compounds identified, three compounds, Cu-3{(NO2)-C6H3-(COO)(2)}(3)(C3N6H6)] (1), Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2)}(CN4H)]center dot-(H2O) (II), and Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2}-)(CN5H2)]center dot 2(H2O) (III), have been isolated as good quality single crystals by employing conventional hydrothermal methods. Three other compounds, Cu-2{(NO2)-C6H3-(COO)(2)}-(CN4H)(H2O) (IIa), Cu-2{(NO2)-C6H3-(COO)(2)}(CN5H2) (IIIa), and Cu-2{(NO2)-C6H3-(COO)(2)}{(CN5H2)(2)}2H(2)O (IIIb), were identified by a combination of elemental analysis, thermogravimetric analysis (TGA), and IR spectroscopic studies, although their structures are yet to be determined. The single crystalline compounds were also characterized by elemental analysis, TGA, IR, UV vis, magnetic, and catalytic studies. The structures of the compounds have paddle wheel (I) and infinite Cu 0(H) Cu chains (II and HI) connected with NLPA and heterocyclic ligands forming two-(II) and three-dimensional (I and III) structures. The bound and lattice water molecules in 11 and 111 could be reversibly removed/inserted without affecting the structure. In the case of II, the removal of water gives rise to a structural transition, but the dehydrated phase reverts back to the original phase on prolonged exposure to atmospheric conditions. Magnetic studies indicate an overall antiferromagnetism in all of the compounds. Lewis acid catalytic studies indicate that compounds II and HI are active for cyanosilylation of imines.
Resumo:
Nonliving waste biomass consisting of Aspergillus niger attached to wheat bran was used as a biosorbent for the removal of copper and zinc from aqueous solutions. Copper and zinc uptake by the biomass obeyed Langmuir isotherms. The binding capacity of the biomass for copper was found to be higher than that for zinc. The metal uptake, expressed in milligrams per gram of biomass, was found to be a function of: the initial metal concentration (with the uptake decreasing with increasing initial concentration), the biomass loading (with the uptake decreasing with increasing biomass loading) and pH (with the uptake increasing with increasing pH in the range of 1.5 and 6.0). The metal uptake was significantly affected in the presence of a co-ion. The uptake of copper by the biomass decreased in the presence of zinc and vice versa. The decrease in metal uptake was dependent on the concentrations of metals in the two-component aqueous solutions. The effect of copper on zinc uptake was more pronounced than the effect of zinc on copper uptake.
Resumo:
Wear of high carbon low alloy (HCLA) cast steel balls during the grinding of a chalcopyrite ore was evaluated under different experimental conditions. The role of oxygen in enhancing ball wear during wet finding is brought out. The influence of pH on ball wear was also examined from the view point of acid production during grinding and reactivity of sulphides. Contributions from corrosion and abrasion towards ball wear are quantified in terms of ball wear rates as a function of time, particle size and gaseous atmosphere in the mill.
Resumo:
The Cu atoms in aquabis(tert-butyl acetoacetato)copper(II),[Cu(C8H13O3)(2)(H2O)], and bis(dipivaloylmethanido)copper(II), [Cu(C11H19O2)(2)], adopt square-pyramidal and planar conformations, respectively, with average Cu--O distances of 1.933 Angstrom in the former (not including the water ligand) and 1.892 Angstrom in the latter. It is interesting to note that the lability of the tert-butyl and methyl groups in both structures, which renders even the location of the terminal C atoms difficult, is reduced at T = 130 K, enabling location of all the protons in the difference Fourier map.
Resumo:
The crystal structure of tetrakis(cytosine)copper(II) perchlorate dihydrate has been determined. All the hydrogen atoms were obtained from Fourier-difference synthesis. The geometry around. copper is a bicapped octahedron (4 + 2 + 2*). The adjacent cytosine rings are oriented head-to-tail with respect to each other and are roughly at right angles to the co-ordination plane. The exocyclic oxo groups form an interligand, intracomplex hydrogen-bonding network above and below the co-ordination plane with the exocyclic amino groups of alternate cytosine bases. The EPR and electronic spectra are consistent with the retention of the solid-state structure in solution. The steric effect of the C(2)=O group of cytosine is offset by the presence of the intracomplex hydrogen-bonding network. The trend in Ei values of Cu-II-Cu-I couples for 1.4 complexes of cytosine, cytodine, pyridine, 2-methylpyridine and N-methylimidazole suggests that both steric effects and pi-delocalization in imidazole and pyridine ligands and the steric effect of C(2)=O in pyrimidine ligands are important in stabilising Cu-I relative to Cu-II.