176 resultados para Continuous plate
Resumo:
We consider a general class of timed automata parameterized by a set of “input-determined” operators, in a continuous time setting. We show that for any such set of operators, we have a monadic second order logic characterization of the class of timed languages accepted by the corresponding class of automata. Further, we consider natural timed temporal logics based on these operators, and show that they are expressively equivalent to the first-order fragment of the corresponding MSO logics. As a corollary of these general results we obtain an expressive completeness result for the continuous version of MTL.
Resumo:
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
Resumo:
Pulse retardation method of Breit and Tuve has been modified to record continuously the equivalent height as well as the intensity of reflections from the ionosphere. Synchronized pulses are transmitted, and the received ground pulse and the reflected pulses, after amplification and suitable distortion, are applied to the focusing cylinder of a cathode ray tube the horizontal deflecting plates of which are connected to a synchronized linear time base circuit. The pattern on the screen is composed of a bright straight line corresponding to the time base with dark gaps corresponding to the received pulses. The distance between the initial points of the gaps represents retardation while the widths of the gaps correspond to the intensity of the pulses. The pattern is photographed on a vertically moving film. One of the first few records taken at Bangalore on 4 megacycles is reproduced. It shows, among other things, that the less retarded component of magneto-ionic splitting from the F layer is present most of the time. Whenever the longer retardation component does occur, it has stronger intensity than the former. Towards the late evening hours, just before disappearing, when the F layer rises and exhibits magnetoionic splitting, the intensity of the less retarded component is extremely low compared with the other component.
Resumo:
The eigenvalues and eigenfunctions corresponding to the three-dimensional equations for the linear elastic equilibrium of a clamped plate of thickness 2ϵ, are shown to converge (in a specific sense) to the eigenvalues and eigenfunctions of the well-known two-dimensional biharmonic operator of plate theory, as ϵ approaches zero. In the process, it is found in particular that the displacements and stresses are indeed of the specific forms usually assumed a priori in the literature. It is also shown that the limit eigenvalues and eigenfunctions can be equivalently characterized as the leading terms in an asymptotic expansion of the three-dimensional solutions, in terms of powers of ϵ. The method presented here applies equally well to the stationary problem of linear plate theory, as shown elsewhere by P. Destuynder.
Resumo:
This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier's method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.
Resumo:
This paper presents a new nine-node Lagrangian quadrilateral plate bending element (MQP9) using the Integrated Force Method (IFM) for the analysis of thin and moderately thick plate bending problems. Three degrees of freedom: transverse displacement w and two rotations theta(x) and theta(y) are considered at each node of the element. The Mindlin-Reissner theory has been employed in the formulation which accounts the effect of shear deformation. Many standard plate bending benchmark problems have been analyzed using the new element MQP9 for various grid sizes via Integrated Force Method to estimate defections and bending moments. These results of the new element MQP9 are compared with those of similar displacement-based plate bending elements available in the literature. The results are also compared with exact solutions. It is observed that the presented new element MQP9 is free from shear locking and produced, in general, excellent results in all plate bending benchmark problems considered.
Resumo:
The objective of this paper is to propose a numerically integrated modified virtual crack closure integral (NI-MVCCI) technique for fracture analysis of cracked plate panels. NI-MVCCI technique is generalized one and the expressions for computing the strain energy release rate (SERR) are independent of the finite element employed. NI-MVCCI technique has been demonstrated for 4-noded, 8-noded (regular and quarter-point) and 9-noded isoparametric finite elements. Numerical studies on fracture analysis of 2-D crack (mode-I and mode-II) problems have been conducted employing these elements. SERR and stress intensity factors (SIF) have been computed for these problems and found to be in good agreement with the respective analytical solutions available in the literature. The appropriate Gauss numerical integration order to be employed for each of these elements for accurate computation of SERR and SIF has been recommended based on the studies.