160 resultados para Conservation equation
Resumo:
The overall rate equation for a reaction sequence consisting of a pre-equilibrium and rate-determining steps should not be derived on the basis of the concentration of the intermediate product (X). This is apparently indicated by transition state theory (as the path followed to reach the highest energy transition state is irrelevant), but also proved by a straight-forward mathematical approach. The thesis is further supported by the equations of concurrent reactions as applied to the partitioning of X between the two competing routes (reversal of the pre-equilibrium and formation of product). The rate equation may only be derived rigorously on the basis of the law of mass action. It is proposed that the reactants acquire the overall activation energy prior to the pre-equilibrium, thus forming X in a high-energy state en route to the rate-determining transition state. (It is argued that conventional energy profile diagrams are misleading and need to be reinterpreted.) Also, these arguments invalidate the Michaelis-Menten equation of enzyme kinetics, and necessitate a fundamental revision of our present understanding of enzyme catalysis. (The observed ``saturation kinetics'' possibly arises from weak binding of a second molecule of substrate at the active site; analogous conclusions apply to reactions at surfaces).
Resumo:
A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.
Resumo:
In this article, we investigate the performance of a volume integral equation code on BlueGene/L system. Volume integral equation (VIE) is solved for homogeneous and inhomogeneous dielectric objects for radar cross section (RCS) calculation in a highly parallel environment. Pulse basis functions and point matching technique is used to convert the volume integral equation into a set of simultaneous linear equations and is solved using parallel numerical library ScaLAPACK on IBM's distributed-memory supercomputer BlueGene/L by different number of processors to compare the speed-up and test the scalability of the code.
Resumo:
Parabolized stability equation (PSE) models are being deve loped to predict the evolu-tion of low-frequency, large-scale wavepacket structures and their radiated sound in high-speed turbulent round jets. Linear PSE wavepacket models were previously shown to be in reasonably good agreement with the amplitude envelope and phase measured using a microphone array placed just outside the jet shear layer. 1,2 Here we show they also in very good agreement with hot-wire measurements at the jet center line in the potential core,for a different set of experiments. 3 When used as a model source for acoustic analogy, the predicted far field noise radiation is in reasonably good agreement with microphone measurements for aft angles where contributions from large -scale structures dominate the acoustic field. Nonlinear PSE is then employed in order to determine the relative impor-tance of the mode interactions on the wavepackets. A series of nonlinear computations with randomized initial conditions are use in order to obtain bounds for the evolution of the modes in the natural turbulent jet flow. It was found that n onlinearity has a very limited impact on the evolution of the wavepackets for St≥0. 3. Finally, the nonlinear mechanism for the generation of a low-frequency mode as the difference-frequency mode 4,5 of two forced frequencies is investigated in the scope of the high Reynolds number jets considered in this paper.
Resumo:
A fully discrete C-0 interior penalty finite element method is proposed and analyzed for the Extended Fisher-Kolmogorov (EFK) equation u(t) + gamma Delta(2)u - Delta u + u(3) - u = 0 with appropriate initial and boundary conditions, where gamma is a positive constant. We derive a regularity estimate for the solution u of the EFK equation that is explicit in gamma and as a consequence we derive a priori error estimates that are robust in gamma. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
The classical Chapman-Enskog expansion is performed for the recently proposed finite-volume formulation of lattice Boltzmann equation (LBE) method D.V. Patil, K.N. Lakshmisha, Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh, J. Comput. Phys. 228 (2009) 5262-5279]. First, a modified partial differential equation is derived from a numerical approximation of the discrete Boltzmann equation. Then, the multi-scale, small parameter expansion is followed to recover the continuity and the Navier-Stokes (NS) equations with additional error terms. The expression for apparent value of the kinematic viscosity is derived for finite-volume formulation under certain assumptions. The attenuation of a shear wave, Taylor-Green vortex flow and driven channel flow are studied to analyze the apparent viscosity relation.
Resumo:
We address a physics-based solution of joule heating phenomenon in a single-layer graphene (SLG) sheet under the presence of Thomson effect. We demonstrate that the temperature in an isotopically pure (containing only C-12) SLG sheet attains its saturation level quicker than when doped with its isotopes (C-13). From the solution of the joule heating equation, we find that the thermal time constant of the SLG sheet is in the order of tenths of a nanosecond for SLG dimensions of a few micrometers. These results have been formulated using the electron interactions with the inplane and flexural phonons to demonstrate a field-dependent Landauer transmission coefficient. We further develop an analytical model of the SLG specific heat using the quadratic (out of plane) phonon band structure over the room temperature. Additionally, we show that a cooling effect in the SLG sheet can be substantially enhanced with the addition of C-13. The methodologies as discussed in this paper can be put forward to analyze the graphene heat spreader theory.
Resumo:
Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3-8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal-India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
To achieve food security and meet the demands of the ever-growing human populations, farming systems have assumed unsustainable practices to produce more from a finite land area. This has been cause for concern mainly due to the often-irreversible damage done to the otherwise productive agricultural landscapes. Agro-ecology is proclaimed to be deteriorating due to eroding integrity of connected ecological mosaics and vulnerability to climate change. This has contributed to declining species diversity, loss of buffer vegetation, fragmentation of habitats, and loss of natural pollinators or predators, which eventually leads to decline in ecosystem services. Currently, a hierarchy of conservation initiatives is being considered to restore ecological integrity of agricultural landscapes. However, the challenge of identifying a suitable conservation strategy is a daunting task in view of socio-ecological factors that may constrain the choice of available strategies. One way to mitigate this situation and integrate biodiversity with agricultural landscapes is to implement offset mechanisms, which are compensatory and balancing approaches to restore the ecological health and function of an ecosystem. This needs to be tailored to the history of location specific agricultural practices, and the social, ecological and environmental conditions. The offset mechanisms can complement other initiatives through which farmers are insured against landscape-level risks such as droughts, fire and floods. For countries in the developing world with significant biodiversity and extensive agriculture, we should promote a comprehensive model of sustainable agricultural landscapes and ecosystem services, replicable at landscape to regional scales. Arguably, the model can be a potential option to sustain the integrity of biodiversity mosaic in agricultural landscapes.
Resumo:
We undertake a systematic, direct numerical simulation of the twodimensional, Fourier-truncated, Gross-Pitaevskii equation to study the turbulent evolutions of its solutions for a variety of initial conditions and a wide range of parameters. We find that the time evolution of this system can be classified into four regimes with qualitatively different statistical properties. Firstly, there are transients that depend on the initial conditions. In the second regime, powerlaw scaling regions, in the energy and the occupation-number spectra, appear and start to develop; the exponents of these power laws and the extents of the scaling regions change with time and depend on the initial condition. In the third regime, the spectra drop rapidly for modes with wave numbers k > kc and partial thermalization takes place for modes with k < kc; the self-truncation wave number kc(t) depends on the initial conditions and it grows either as a power of t or as log t. Finally, in the fourth regime, complete thermalization is achieved and, if we account for finite-size effects carefully, correlation functions and spectra are consistent with their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a natural generalization of recent studies of thermalization in the Euler and other hydrodynamical equations; it combines ideas from fluid dynamics and turbulence, on the one hand, and equilibrium and nonequilibrium statistical mechanics on the other.
Resumo:
In this article, we obtain explicit solutions of a system of forced Burgers equation subject to some classes of bounded and compactly supported initial data and also subject to certain unbounded initial data. In a series of papers, Rao and Yadav (2010) 1-3] obtained explicit solutions of a nonhomogeneous Burgers equation in one dimension subject to certain classes of bounded and unbounded initial data. Earlier Kloosterziel (1990) 4] represented the solution of an initial value problem for the heat equation, with initial data in L-2 (R-n, e(vertical bar x vertical bar 2/2)), as a series of self-similar solutions of the heat equation in R-n. Here we express the solutions of certain classes of Cauchy problems for a system of forced Burgers equation in terms of self-similar solutions of some linear partial differential equations. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
The high concentration of the world's species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.
Resumo:
Although grain boundary sliding (GBS) has been recognized as an important process during high-temperature deformation in crystalline materials, there is paucity in experimental data for characterizing a constitutive equation for GBS. High-temperature tensile creep experiments were conducted, together with measurements of GBS at different strains, stresses, grain sizes, and temperatures. Experimental data obtained on a Mg AZ31 alloy demonstrate that, for the first time, dynamic recrystallization during creep does not alter the contribution of GBS to creep during high-temperature deformation. The experimentally observed invariance of the sliding contribution with strain was used together with the creep data for developing a constitutive equation for GBS in a manner similar to the standard creep equation. Using this new approach, it is demonstrated that the stress, grain size, and temperature dependence for creep and GBS are identical. This is rationalized by a model based on GBS controlled by dislocations, within grains or near-grain boundaries. (C) The Minerals, Metals & Materials Society and ASM International 2013