163 resultados para Classical correlation
Resumo:
The Radio Interference (RI) from electric power transmission line hardware, if not controlled, poses serious electromagnetic interference to system in the vicinity. The present work mainly concerns with the RI from the insulator string along with the associated line hardware. The laboratory testing for the RI levels are carried out through the measurement of the conducted radio interference levels. However such measurements do not really locate the coronating point, as well as, the mode of corona. At the same time experience shows that it is rather difficult to locate the coronating points by mere inspection. After a thorough look into the intricacies of the problem, it is ascertained that the measurement of associated ground end currents could give a better picture of the prevailing corona modes and their intensities. A study on the same is attempted in the present work. Various intricacies of the problem,features of ground end current pulses and its correlation with RI are dealt with. Owing to the complexity of such experimental investigations, the study made is not fully complete nevertheless it seems to be first of its kind.
Resumo:
The assembly of aerospace and automotive structures in recent years is increasingly carried out using adhesives. Adhesive joints have advantages of uniform stress distribution and less stress concentration in the bonded region. Nevertheless, they may suffer due to the presence of defects in bond line and at the interface or due to improper curing process. While defects like voids, cracks and delaminations present in the adhesive bond line may be detected using different NDE methods, interfacial defects in the form of kissing bond may go undetected. Attempts using advanced ultrasonic methods like nonlinear ultrasound and guided wave inspection to detect kissing bond have met with limited success stressing the need for alternate methods. This paper concerns the preliminary studies carried out on detectability of dry contact kissing bonds in adhesive joints using the Digital Image Correlation (DIC) technique. In this attempt, adhesive joint samples containing varied area of kissing bond were prepared using the glass fiber reinforced composite (GFRP) as substrates and epoxy resin as the adhesive layer joining them. The samples were also subjected to conventional and high power ultrasonic inspection. Further, these samples were loaded till failure to determine the bond strength during which digital images were recorded and analyzed using the DIC method. This noncontact method could indicate the existence of kissing bonds at less than 50% failure load. Finite element studies carried out showed a similar trend. Results obtained from these preliminary studies are encouraging and further tests need to be done on a larger set of samples to study experimental uncertainties and scatter associated with the method. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric ``correlation between probabilities of recurrence'' (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.
Resumo:
A sequence of moments obtained from statistical trials encodes a classical probability distribution. However, it is well known that an incompatible set of moments arises in the quantum scenario, when correlation outcomes associated with measurements on spatially separated entangled states are considered. This feature, viz., the incompatibility of moments with a joint probability distribution, is reflected in the violation of Bell inequalities. Here, we focus on sequential measurements on a single quantum system and investigate if moments and joint probabilities are compatible with each other. By considering sequential measurement of a dichotomic dynamical observable at three different time intervals, we explicitly demonstrate that the moments and the probabilities are inconsistent with each other. Experimental results using a nuclear magnetic resonance system are reported here to corroborate these theoretical observations, viz., the incompatibility of the three-time joint probabilities with those extracted from the moment sequence when sequential measurements on a single-qubit system are considered.
Resumo:
We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.
Resumo:
Music signals comprise of atomic notes drawn from a musical scale. The creation of musical sequences often involves splicing the notes in a constrained way resulting in aesthetically appealing patterns. We develop an approach for music signal representation based on symbolic dynamics by translating the lexicographic rules over a musical scale to constraints on a Markov chain. This source representation is useful for machine based music synthesis, in a way, similar to a musician producing original music. In order to mathematically quantify user listening experience, we study the correlation between the max-entropic rate of a musical scale and the subjective aesthetic component. We present our analysis with examples from the south Indian classical music system.
Resumo:
The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl to methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (xi) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T-rheo), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(delta phi)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T-s). Interestingly, the values of both T-rheo and T-s shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both ``frozen'' PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T-g). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.
Resumo:
Glasses in the x(BaO-TiO2)-B2O3 (x = 0.25, 0.5, 0.75, and 1 mol.) system were fabricated via the conventional melt-quenching technique. Thermal stability and glass-forming ability as determined by differential thermal analysis (DTA) were found to increase with increasing BaO-TiO2 (BT) content. However, there was no noticeable change in the glass transition temperature (T-g). This was attributed to the active participation of TiO2 in the network formation especially at higher BT contents via the conversion of the TiO6 structural units into TiO4 units, which increased the connectivity and resulted in an increase in crystallization temperature. Dielectric and optical properties at room temperature were studied for all the glasses under investigation. Interestingly, these glasses were found to be hydrophobic. The results obtained were correlated with different structural units and their connectivity in the glasses.
Resumo:
As System-on-Chip (SoC) designs migrate to 28nm process node and beyond, the electromagnetic (EM) co-interactions of the Chip-Package-Printed Circuit Board (PCB) becomes critical and require accurate and efficient characterization and verification. In this paper a fast, scalable, and parallelized boundary element based integral EM solutions to Maxwell equations is presented. The accuracy of the full-wave formulation, for complete EM characterization, has been validated on both canonical structures and real-world 3-D system (viz. Chip + Package + PCB). Good correlation between numerical simulation and measurement has been achieved. A few examples of the applicability of the formulation to high speed digital and analog serial interfaces on a 45nm SoC are also presented.
Resumo:
The demand for energy efficient, low weight structures has boosted the use of composite structures assembled using increased quantities of structural adhesives. Bonded structures may be subjected to severe working environments such as high temperature and moisture due to which the adhesive gets degraded over a period of time. This reduces the strength of a joint and leads to premature failure. Measurement of strains in the adhesive bondline at any point of time during service may be beneficial as an assessment can be made on the integrity of a joint and necessary preventive actions may be taken before failure. This paper presents an experimental approach of measuring peel and shear strains in the adhesive bondline of composite single-lap joints using digital image correlation. Different sets of composite adhesive joints with varied bond quality were prepared and subjected to tensile load during which digital images were taken and processed using digital image correlation software. The measured peel strain at the joint edge showed a rapid increase with the initiation of a crack till failure of the joint. The measured strains were used to compute the corresponding stresses assuming a plane strain condition and the results were compared with stresses predicted using theoretical models, namely linear and nonlinear adhesive beam models. A similar trend in stress distribution was observed. Further comparison of peel and shear strains also exhibited similar trend for both healthy and degraded joints. Maximum peel stress failure criterion was used to predict the failure load of a composite adhesive joint and a comparison was made between predicted and actual failure loads. The predicted failure loads from theoretical models were found to be higher than the actual failure load for all the joints.
Resumo:
Hollow nanostructures are used for various applications including catalysis, sensing, and drug delivery. Methods based on the Kirkendall effect have been the most successful for obtaining hollow nanostructures of various multicomponent systems. The classical Kirkendall effect relies on the presence of a faster diffusing species in the core; the resultant imbalance in flux results in the formation of hollow structures. Here, an alternate non-Kirkendall mechanism that is operative for the formation of hollow single crystalline particles of intermetallic PtBi is demonstrated. The synthesis method involves sequential reduction of Pt and Bi salts in ethylene glycol under microwave irradiation. Detailed analysis of the reaction at various stages indicates that the formation of the intermetallic PtBi hollow nanoparticles occurs in steps. The mechanistic details are elucidated using control experiments. The use of microwave results in a very rapid synthesis of intermetallics PtBi that exhibits excellent electrocatalytic activity for formic acid oxidation reaction. The method presented can be extended to various multicomponent systems and is independent of the intrinsic diffusivities of the species involved.
Resumo:
The dispersion of a softer phase in a metallic matrix reduces the coefficient of friction (COF), often at the expense of an increased wear rate at the tribological contact. To address this issue, unlubricated fretting wear tests were performed on spark plasma sintered Cu-Pb nanocomposites against bearing steel. The sintering temperature and the Pb content as well as the fretting parameters were judiciously selected and varied to investigate the role of microstructure (grain size, second-phase content) on the wear resistance properties of Cu-Pb nanocomposites. A combination of the lowest wear rate (similar to 1.5 x 10(-6) mm(3)/Nm) and a modest COF (similar to 0.4) was achieved for Cu-15 wt pct Pb nanocomposites. The lower wear rate of Cu-Pb nanocomposites with respect to unreinforced Cu is attributed to high hardness (similar to 2 to 3.5 GPa) of the matrix, Cu2O/Fe2O3-rich oxide layer formation at tribological interface, and exuding of softer Pb particles. The wear properties are discussed in reference to the characteristics of transfer layer on worn surface as well as subsurface damage probed using focused ion beam microscopy. Interestingly, the flash temperature has been found to have insignificant effect on the observed oxidative wear, and alternative mechanisms are proposed. Importantly, the wear resistance properties of the nanocomposites reveal a weak Hall-Petch-like relationship with grain size of nanocrystalline Cu. (C) The Minerals, Metals & Materials Society and ASM International 2013
Resumo:
We analytically evaluate the large deviation function in a simple model of classical particle transfer between two reservoirs. We illustrate how the asymptotic long-time regime is reached starting from a special propagating initial condition. We show that the steady-state fluctuation theorem holds provided that the distribution of the particle number decays faster than an exponential, implying analyticity of the generating function and a discrete spectrum for its evolution operator.
Resumo:
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a-p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and beta-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.
Resumo:
Cascading energy landscapes through funneling has been postulated as a mechanistic route for achieving the lowest energy configuration of a macromolecular system (such as proteins and polymers). In particular, understanding the molecular mechanism for the melting and crystallization of polymers is a challenging fundamental question. The structural modifications that lead to the melting of poly(ethylene glycol) (PEG) are investigated here. Specific Raman bands corresponding to different configurations of the PEG chain have been identified, and the molecular structural dynamics of PEG melting have been addressed using a combination of Raman spectroscopy, 2D Raman correlation and density functional theory (DFT) calculations. The melting dynamics of PEG have been unambiguously explained along the C-O bond rotation coordinate.