154 resultados para Clarke, James--active 1722
Resumo:
Here we present the fabrication and characterization of a new class of hybrid devices where the constituents are graphene and ultrathin molybdenum di-sulphide (MoS2). This device is one of the simplest member of a family of hybrids where the desirable electrical characteristics of graphene such as high mobility are combined with optical activity of semiconductors. We find that in the presence of an optically active substrate, considerable photoconductivity is induced in graphene which is persistent up to a time scale of at least several hours. This photo induced memory can be erased by the application of a suitable gate voltage pulse. This memory operation is stable for many cycles. We present a theoretical model based on localized states in MoS2 which explains the data. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
How does the presence of plastic active dendrites in a pyramidal neuron alter its spike initiation dynamics? To answer this question, we measured the spike-triggered average (STA) from experimentally constrained, conductance-based hippocampal neuronal models of various morphological complexities. We transformed the STA computed from these models to the spectral and the spectrotemporal domains and found that the spike initiation dynamics exhibited temporally localized selectivity to a characteristic frequency. In the presence of the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, the STA characteristic frequency strongly correlated with the subthreshold resonance frequency in the theta frequency range. Increases in HCN channel density or in input variance increased the STA characteristic frequency and its selectivity strength. In the absence of HCN channels, the STA exhibited weak delta frequency selectivity and the characteristic frequency was related to the repolarization dynamics of the action potentials and the recovery kinetics of sodium channels from inactivation. Comparison of STA obtained with inputs at various dendritic locations revealed that nonspiking and spiking dendrites increased and reduced the spectrotemporal integration window of the STA with increasing distance from the soma as direct consequences of passive filtering and dendritic spike initiation, respectively. Finally, the presence of HCN channels set the STA characteristic frequency in the theta range across the somatodendritic arbor and specific STA measurements were strongly related to equivalent transfer-impedance-related measurements. Our results identify explicit roles for plastic active dendrites in neural coding and strongly recommend a dynamically reconfigurable multi-STA model to characterize location-dependent input feature selectivity in pyramidal neurons.
Resumo:
The aim of this work is to enable seamless transformation of product concepts to CAD models. This necessitates availability of 3D product sketches. The present work concerns intuitive generation of 3D strokes and intrinsic support for space sharing and articulation for the components of the product being sketched. Direct creation of 3D strokes in air lacks in precision, stability and control. The inadequacy of proprioceptive feedback for the task is complimented in this work with stereo vision and haptics. Three novel methods based on pencil-paper interaction analogy for haptic rendering of strokes have been investigated. The pen-tilt based rendering is simpler and found to be more effective. For the spatial conformity, two modes of constraints for the stylus movements, corresponding to the motions on a control surface and in a control volume have been studied using novel reactive and field based haptic rendering schemes. The field based haptics, which in effect creates an attractive force field near a surface, though non-realistic, provided highly effective support for the control-surface constraints. The efficacy of the reactive haptic rendering scheme for the constrained environments has been demonstrated using scribble strokes. This can enable distributed collaborative 3D concept development. The notion of motion constraints, defined through sketch strokes enables intuitive generation of articulated 3D sketches and direct exploration of motion annotations found in most product concepts. The work, thus, establishes that modeling of the constraints is a central issue in 3D sketching.
Resumo:
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment. The results of simulations with various drive input signals show that the yaw stability controller using fuzzy logic proposed in the current study has a good performance in situations involving unexpected yaw motion. The yaw rate errors of a vehicle having the proposed controller are notably smaller than an uncontrolled vehicle's, and the vehicle having the yaw stability controller recovers lateral distance and desired yaw rate more quickly than the uncontrolled vehicle.
Resumo:
Modern pulse-width-modulated (PWM) rectifiers use LC L filters that can be applied in both the common mode and differential mode to obtain high-performance filtering. Interaction between the passive L and C components in the filter leads to resonance oscillations. These oscillations need to be damped either by the passive damping or active damping. The passive damping increases power loss and can reduce the effectiveness of the filter. Methods of active damping, using control strategy, are lossless while maintaining the effectiveness of the filters. In this paper, an active damping strategy is proposed to damp the oscillations in both line-to-line and line-to-ground. An approach based on pole placement by the state feedback is used to actively damp both the differential-and common-mode filter oscillations. Analytical expressions for the state-feedback controller gains are derived for both continuous and discrete-time model of the filter. Tradeoff in selection of the active damping gain on the lower order power converter harmonics is analyzed using a weighted admittance function. Experimental results on a 10-kVA laboratory prototype PWM rectifier are presented. The results validate the effectiveness of the active damping method, and the tradeoff in the settings of the damping gain.
Resumo:
An aeroelastic analysis is used to investigate the rate dependent hysteresis in piezoceramic actuators and its effect on helicopter vibration control with trailing edge flaps. Hysteresis in piezoceramic materials can cause considerable complications in the use of smart actuators as prime movers in applications such as helicopter active vibration control. Dynamic hysteresis of the piezoelectric stack actuator is investigated for a range of frequencies (5 Hz (1/rev) to 30 Hz (6/rev)) which are of practical importance for helicopter vibration analysis. Bench top tests are conducted on a commercially available piezoelectric stack actuator. Frequency dependent hysteretic behavior is studied experimentally for helicopter operational frequencies. Material hysteresis in the smart actuator is mathematically modeled using the theory of conic sections. Numerical simulations are also performed at an advance ratio of 0.3 for vibration control analysis using a trailing edge flap with an idealized linear and a hysteretic actuator. The results indicate that dynamic hysteresis has a notable effect on the hub vibration levels. It is found that the theory of conic sections offers a straight forward approach for including hysteresis into aeroelastic analysis.
Resumo:
The maintenance of ion channel homeostasis, or channelostasis, is a complex puzzle in neurons with extensive dendritic arborization, encompassing a combinatorial diversity of proteins that encode these channels and their auxiliary subunits, their localization profiles, and associated signaling machinery. Despite this, neurons exhibit amazingly stereotypic, topographically continuous maps of several functional properties along their active dendritic arbor. Here, we asked whether the membrane composition of neurons, at the level of individual ion channels, is constrained by this structural requirement of sustaining several functional maps along the same topograph. We performed global sensitivity analysis on morphologically realistic conductance-based models of hippocampal pyramidal neurons that coexpressed six well-characterized functional maps along their trunk. We generated randomized models by varying 32 underlying parameters and constrained these models with quantitative experimental measurements from the soma and dendrites of hippocampal pyramidal neurons. Analyzing valid models that satisfied experimental constraints on all six functional maps, we found topographically analogous functional maps to emerge from disparate model parameters with weak pairwise correlations between parameters. Finally, we derived a methodology to assess the contribution of individual channel conductances to the various functional measurements, using virtual knockout simulations on the valid model population. We found that the virtual knockout of individual channels resulted in variable, measurement and location-specific impacts across the population. Our results suggest collective channelostasis as a mechanism behind the robust emergence of analogous functional maps and have significant ramifications for the localization and targeting of ion channels and enzymes that regulate neural coding and homeostasis.
Resumo:
Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.
Resumo:
This paper presents the design and modeling of an active five-axis compliant micromanipulator whose tip orientation can be independently controlled by large angles about two axes and the tip-position can be controlled in three dimensions. These features enable precise control of the contact point of the tip and the tip-sample interaction forces with three-dimensional nanoscale objects, including those features that are conventionally inaccessible. Control of the tip-motion is realized by means of electromagnetic actuation combined with a novel kinematic and structural design of the micromanipulator, which, in addition, also ensures compatibility with existing high-resolution motion-measurement systems. The design and analysis of the manipulator structure and those of the actuation system are first presented. Quasi-static and dynamic lumped-parameter (LP) models are then derived for the five-axis compliant micromanipulator. Finite element (FE) analysis is employed to validate these models, which are subsequently used to study the effects of tip orientation on the mechanical characteristics of the five-axis micromanipulator. Finally, a prototype of the designed five-axis manipulator is fabricated by means of focused ion-beam milling (FIB).
Resumo:
The self-organized motion of vast numbers of creatures in a single direction is a spectacular example of emergent order. Here, we recreate this phenomenon using actuated nonliving components. We report here that millimetre-sized tapered rods, rendered motile by contact with an underlying vibrated surface and interacting through a medium of spherical beads, undergo a phase transition to a state of spontaneous alignment of velocities and orientations above a threshold bead area fraction. Guided by a detailed simulation model, we construct an analytical theory of this flocking transition, with two ingredients: a moving rod drags beads; neighbouring rods reorient in the resulting flow like a weathercock in the wind. Theory and experiment agree on the structure of our phase diagram in the plane of rod and bead concentrations and power-law spatial correlations near the phase boundary. Our discovery suggests possible new mechanisms for the collective transport of particulate or cellular matter.
Resumo:
Few-layer transition metal dichalcogenide alloys based on molybdenum sulphoselenides MoS2(1-x)Se2x] possess higher hydrogen evolution (HER) activity compared to pristine few-layer MoS2 and MoSe2. Variation of the sulphur or selenium content in the parent dichalcogenides reveals a systematic structure-activity relationship for different compositions of alloys, and it is found that the composition MoS1.0Se1.0 shows the highest HER activity amongst the catalysts studied. The tunable electronic structure of MoS2/MoSe2 upon Se/S incorporation probably assists in the realization of high HER activity.
Resumo:
Among the intelligent safety technologies for road vehicles, active suspensions controlled by embedded computing elements for preventing rollover have received a lot of attention. The existing models for synthesizing and allocating forces in such suspensions are conservatively based on the constraints that are valid until no wheels lift off the ground. However, the fault tolerance of the rollover-preventive systems can be enhanced if the smart/active suspensions can intervene in the more severe situation in which the wheels have just lifted off the ground. The difficulty in computing control in the last situation is that the vehicle dynamics then passes into the regime that yields a model involving disjunctive constraints on the dynamics. Simulation of dynamics with disjunctive constraints in this context becomes necessary to estimate, synthesize, and allocate the intended hardware realizable forces in an active suspension. In this paper, we give an algorithm for the previously mentioned problem by solving it as a disjunctive dynamic optimization problem. Based on this, we synthesize and allocate the roll-stabilizing time-dependent active suspension forces in terms of sensor output data. We show that the forces obtained from disjunctive dynamics are comparable with existing force allocations and, hence, are possibly realizable in the existing hardware framework toward enhancing the safety and fault tolerance.
Resumo:
We have reported previously that the long-term survival of Mycobacterium smegmatis is facilitated by a dual-active enzyme MSDGC-1 (renamed DcpA), which controls the cellular turnover of cyclic diguanosine monophosphate (c-di-GMP). Most mycobacterial species possess at least a single copy of a DcpA orthologue that is highly conserved in terms of sequence similarity and domain architecture. Here, we show that DcpA exists in monomeric and dimeric forms. The dimerization of DcpA is due to non-covalent interactions between two protomers that are arranged in a parallel orientation. The dimer shows both synthesis and hydrolysis activities, whereas the monomer shows only hydrolysis activity. In addition, we have shown that DcpA is associated with the cytoplasmic membrane and exhibits heterogeneous cellular localization with a predominance at the cell poles. Finally, we have also shown that DcpA is involved in the change in cell length and colony morphology of M. smegmatis. Taken together, our study provides additional evidence about the role of the bifunctional protein involved in c-di-GMP signalling in M. smegmatis.
Resumo:
By using high-resolution observations of nearly co-temporal and co-spatial Solar Optical Telescope spectropolarimeter and X-Ray Telescope coronal X-ray data onboard Hinode, we revisit the problematic relationship between global magnetic quantities and coronal X-ray brightness. Co-aligned vector magnetogram and X-ray data were used for this study. The total X-ray brightness over active regions is well correlated with integrated magnetic quantities such as the total unsigned magnetic flux, the total unsigned vertical current, and the area-integrated square of the vertical and horizontal magnetic fields. On accounting for the inter-dependence of the magnetic quantities, we inferred that the total magnetic flux is the primary determinant of the observed integrated X-ray brightness. Our observations indicate that a stronger coronal X-ray flux is not related to a higher non-potentiality of active-region magnetic fields. The data even suggest a slightly negative correlation between X-ray brightness and a proxy of active-region non-potentiality. Although there are small numerical differences in the established correlations, the main conclusions are qualitatively consistent over two different X-ray filters, the Al-poly and Ti-poly filters, which confirms the strength of our conclusions and validate and extend earlier studies that used low-resolution data. We discuss the implications of our results and the constraints they set on theories of solar coronal heating.