224 resultados para Characteristics of texture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rammed earth is an energy efficient and low carbon emission alternative for load bearing walls. This paper attempts to examine the influence of clay content and moisture content on the compressive strength of cement stabilised rammed earth (CSRE) through experimental investigations. Compressive strength of CSRE prisms was monitored both in dry and wet (saturated) conditions. Major conclusions of the study are:(a) Optimum clay content for maximum compressive strength is about 16%, (b) the strength of CSRE is sensitive to the moisture content at the time of testing, (c) Strength in saturated condition is less than half of the dry strength and (d) Water absorption (saturated water content) increases as the clay content of the soil mix increases and it is in the range of 12 to 16% for the CRSE prisms with 8% cement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoembedded aluminum alloys with bimetallic dispersoids of Sn and Pb of compositions Sn82–Pb18, Sn64–Pb36, and Sn54–Pb46 were synthesized by rapid solidification. The two phases, face-centered-cubic Pb and tetragonal Sn solid-solution, coexist in all the particles. The crystallographic relation between the two phases and the matrix depends upon the solidification pathways adopted by the particles. For Al–(Sn82–Pb18), we report a new orientation relation given by [011]Al//[010]Sn and (o11)A1//(101)Sn. Pb exhibits a cube-on-cube orientation with Al in few particles, while in others no orientation relationship could be observed. In contrast, Pb in Sn64–Pb36 and Sn54–Pb46 particles always exhibits cube-on-cube orientation with the matrix. Sn does not show any orientation relationship with Al or Pb in these cases. Differential scanning calorimetry studies revealed melting at eutectic temperature for all compositions, although solidification pathways are different. Attempts were made to correlate these with the melting and heterogeneous nucleation characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we investigate the effect of vacuum sealing the backside cavity of a Capacitive Micromachined Ultrasonic Transducer (CMUT). The presence or absence of air inside the cavity has a marked effect upon the system parameters, such as the natural frequency, damping, and the pull-in voltage. The presence of vacuum inside the cavity of the device causes a reduction in the effective gap height which leads to a reduction in the pull-in voltage. We carry out ANSYS simulations to quantify this reduction. The presence of vacuum inside the cavity of the device causes stress stiffening of the membrane, which changes the natural frequency of the device. A prestressed modal analysis is carried out to determine the change in natural frequency due to stress stiffening. The equivalent circuit method is used to evaluate the performance of the device in the receiver mode. The lumped parameters of the device are obtained and an equivalent circuit model of the device is constructed to determine the open circuit receiving sensitivity of the device. The effect of air in the cavity is included by incorporating an equivalent compliance and an equivalent resistance in the equivalent circuit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the reaction between a molten iron drop and dense alumina was studied using the X-ray sessile-drop method under different oxygen partial pressures in the gas atmosphere. The changes in contact angles between the iron drop and the alumina substrate were followed as functions of temperature and varying partial pressures of oxygen in the temperature range 1823 to 1873 K both in static and dynamic modes. The results of the contact angle measurements with pure iron in contact with dense alumina in extremely well-purified argon as well as under different oxygen partial pressures in the gas atmosphere showed good agreement with earlier measurements reported in the literature. In the dynamic mode, when argon was replaced by a CO-CO2-Ar mixture with a well-defined PO, in the gas, the contact angle showed an initial decrease followed by a period of nearly constant contact angle. At the end of this period, the length of which was a function of the P-O2 imposed, a further steep decrease in the contact angle was noticed. An intermediate layer of FeAl2O4 was detected in the scanning electron microscope (SEM) analysis of the reacted substrates. An interesting observation in the present experiments is that the iron drop moved away from the site of the reaction once the product layer covered the interface. The results are analyzed on the basis of the various forces acting on the drop.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical rotatory features of the beta-structure of the polypeptides in non-aqueous solutions and films cast from these solutions have been investigated. The beta-structure of poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-S-benzyl-L-cysteine, poly-S-carbobenzoxy-L-cysteine and poly-O-carbo-bands of their films. The optical rotatory dispersion (ORD) and circular dichroism (CD) spectra of these polypeptides are found to be very similar in both film and solution. In solvents promoting the beta-structure, the polypeptides are characterized by CD troughs in the n-pi* transition region of the peptide chromophore. The ORD spectra are found to be positive in sign throughout the visible and accessible ultraviolet regions and are interpreted in terms of the possible existence of a relatively much larger positive pi-pi* CD bands as compared with the negative n-pi* band. The rotatory data obtained in the non-aqueous solution are compared with those obtained for other poly peptides in aqueous solutions, with respect to the type and extent of beta-structure present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercially Pure Magnesium initially hot rolled and having a basal texture was deformed by Equal Channel Angular Extrusion (ECAE). ECAE was carried out upto 8 passes in a 90° die following routes A and Bc through a processing sequence involving two temperatures, namely 523 and 473 K. Texture and microstructure formed were studied using electron back scatter diffraction (EBSD) technique. In addition to significant reduction in grain size, strong <0002> fiber texture inclined at an angle ~ 45o from the extrusion axis formed in the material. Texture was also analyzed by orientation distribution function (ODF) and compared vis-à-vis shear texture. A significant amount of dynamic recrystallization occurred during ECAE, which apparently did not influence texture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of strain path change during rolling has been investigated for copper and nickel using X-ray diffraction and electron back scatter diffraction as well as crystal plasticity simulations. Four different strain paths namely: (i) unidirectional rolling; (ii) reverse rolling; (iii) two-step cross rolling and (iv) multi-step cross rolling were employed to decipher the effect of strain path change on the evolution of deformation texture and microstructure. The cross rolled samples showed weaker texture with a prominent Bs {1 1 0}< 1 1 2 > and P(B(ND)) {1 1 0}< 1 1 1 > component in contrast to the unidirectional and reverse rolled samples where strong S {1 2 3}< 6 3 4 > and Cu {1 1 2}< 1 1 1 > components were formed. This was more pronounced for copper samples compared to nickel. The cross rolled samples were characterized by lower anisotropy and Taylor factor as well as less variation in Lankford parameter. Viscoplastic self-consistent simulations indicated that slip activity on higher number of octahedral slip systems can explain the weaker texture as well as reduced anisotropy in the cross rolled samples. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were conducted to measure the ac breakdown strength of epoxy alumina nanocomposites with different filler loadings of 0.1, 1 and 5 wt%. The experiments were performed as per the ASTM D 149 standard on samples of thickness 0.5 mm, 1 mm and 3 mm in order to study the effect of thickness on the ac breakdown strength of epoxy nanocomposites. In the case of epoxy alumina nanocomposites it was observed that the ac breakdown strength was marginally lower for 0.1 wt% and 1 wt% filler loadings and then increased at 5 wt% filler loading as compared to the unfilled epoxy. The Weibull shape parameter (beta) increased with the addition of nanoparticles to epoxy as well as with the increasing sample thickness for all the filler loadings considered. DSC analysis was done to study the material properties at the filler resin interface in order to understand the effect of the filler loading and thereby the influence of the interface on the ac breakdown strength of epoxy nanocomposites. It was also observed that the decrease in ac electric breakdown strength with an increase in sample thickness follows an inverse power-law dependence. In addition, the ac breakdown strength of epoxy silica nanocomposites have also been studied in order to understand the influence of the filler type on the breakdown strength.