162 resultados para Bingham fluid
Resumo:
We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.
Resumo:
We show that a fluid under strong spatially periodic confinement displays a glass transition within mode-coupling theory at a much lower density than the corresponding bulk system. We use fluctuating hydrodynamics, with confinement imposed through a periodic potential whose wavelength plays an important role in our treatment. To make the calculation tractable we implement a detailed calculation in one dimension. Although we do not expect simple 1d fluids to show a glass transition, our results are indicative of the behavior expected in higher dimensions. In a certain region of parameter space we observe a three-step relaxation reported recently in computer simulations [S. H. Krishnan, Ph.D. thesis, Indian Institute of Science (2005); Kim et al., Eur. Phys. J. Special Topics 189, 135 (2010)] and a glass-glass transition. We compare our results to those of Krakoviack [Phys. Rev. E 75, 031503 (2007)] and Lang et al. [Phys. Rev. Lett. 105, 125701 (2010)].
Resumo:
Abstract | There exist a huge range of fish species besides other aquatic organisms like squids and salps that locomote in water at large Reynolds numbers, a regime of flow where inertial forces dominate viscous forces. In the present review, we discuss the fluid mechanics governing the locomotion of such organisms. Most fishes propel themselves by periodic undulatory motions of the body and tail, and the typical classification of their swimming modes is based on the fraction of their body that undergoes such undulatory motions. In the angulliform mode, or the eel type, the entire body undergoes undulatory motions in the form of a travelling wave that goes from head to tail, while in the other extreme case, the thunniform mode, only the rear tail (caudal fin) undergoes lateral oscillations. The thunniform mode of swimming is essentially based on the lift force generated by the airfoil like crosssection of the fish tail as it moves laterally through the water, while the anguilliform mode may be understood using the “reactive theory” of Lighthill. In pulsed jet propulsion, adopted by squids and salps, there are two components to the thrust; the first due to the familiar ejection of momentum and the other due to an over-pressure at the exit plane caused by the unsteadiness of the jet. The flow immediately downstream of the body in all three modes consists of vortex rings; the differentiating point being the vastly different orientations of the vortex rings. However, since all the bodies are self-propelling, the thrust force must be equal to the drag force (at steady speed), implying no net force on the body, and hence the wake or flow downstream must be momentumless. For such bodies, where there is no net force, it is difficult to directly define a propulsion efficiency, although it is possible to use some other very different measures like “cost of transportation” to broadly judge performance.
Resumo:
Scattering of water waves by a sphere in a two-layer fluid, where the upper layer has an ice-cover modelled as an elastic plate of very small thickness, while the lower one has a rigid horizontal bottom surface, is investigated within the framework of linearized water wave theory. The effects of surface tension at the surface of separation is neglected. There exist two modes of time-harmonic waves - the one with lower wave number propagating along the ice-cover and the one with higher wave number along the interface. Method of multipole expansions is used to find the particular solution for the problem of wave scattering by a submerged sphere placed in either of the layers. The exciting forces for vertical and horizontal directions are derived and plotted against different values of the wave number for different submersion depths of the sphere and flexural rigidity of the ice-cover. When the flexural rigidity and the density of the ice-cover are taken to be zero, the numerical results for the exciting forces for the problem with free surface are recovered as particular cases. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Analytical expressions are found for the wavenumbers in an infinite flexible in vacuo I fluid-filled circular cylindrical shell based on different shell-theories using asymptotic methods. Donnell-Mushtari theory (the simplest shell theory) and four higher order theories, namely Love-Timoshenko, Goldenveizer-Novozhilov, Flugge and Kennard-simplified are considered. Initially, in vacuo and fluid-coupled wavenumber expressions are presented using the Donnell-Mushtari theory. Subsequently, the wavenumbers using the higher order theories are presented as perturbations on the Donnell-Mushtari wavenumbers. Similarly, expressions for the resonance frequencies in a finite shell are also presented, using each shell theory. The basic differences between the theories being what they are, the analytical expressions obtained from the five theories allow one to see how these differences propagate into the asymptotic expansions. Also, they help to quantify the difference between the theories for a wide range of parameter values such as the frequency range, circumferential order, thickness ratio of the shell, etc.
Resumo:
In this paper, ultrasonic wave propagation analysis in fluid filled single-walled carbon nanotube (SWCNT) is studied using nonlocal elasticity theory. The SWCNT is modeled using Flugge's shell theory, with the wall having axial, circumferential and radial degrees of freedom and also including small scale effects. The fluid inside the SWCNT is assumed as water. Nonlocal governing equations for this system are derived and wave propagation analysis is also carried out. The presence of fluid in SWCNT alters the ultrasonic wave dispersion behavior. The wavenumber and wave velocity are smaller in presence of fluid as compared to the empty SWCNT. The nonlocal elasticity calculation shows that the wavenumber tends to reach the continuum limit at certain frequencies and the corresponding wave velocity tends to zero at those frequencies indicating localization and stationary behavior. It has been shown that the circumferential. waves will propagate non-dispersively at higher frequencies in nonlocality. The magnitudes of wave velocities of circumferential waves are smaller in nonlocal elasticity as compared to local elasticity. We also show that the cut-off frequency depend on the nonlocal scaling parameter and also on the density of the fluid inside the SWCNT, and the axial wavenumber, as the fluid becomes denser the cut-off frequency decreases. The effect of axial wavenumber on the ultrasonic wave behavior in SWCNTS filled with water is also discussed.
Resumo:
We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end. potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 degrees C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
Molecular dynamic simulations of a strongly inhomogeneous system reveals that a single-component soft-sphere fluid can behave as a fragile glass former due to confinement. The self-intermediate scattering function, F-s(k,t), of a Lennard-Jones fluid confined in slit-shaped pores, which can accomodate two to four fluid layers, exhibits a two-step relaxation at moderate temperatures. The mean-squared displacement data are found to follow time-temperature superposition and both the self-diffusivity and late a relaxation times exhibit power-law divergences as the fluid is cooled. The system possesses a crossover temperature and follows the scalings of mode coupling theory for the glass transition. The temperature dependence of the self-diffusivity can be expressed using the Vogel-Fulcher-Tammann equation, and estimates of the fragility index of the system indicates a fragile glass former. At lower temperatures, signatures of additional relaxation processes are observed in the various dynamical quantities with a three-step relaxation observed in the F-s(k,t).
Resumo:
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6Â mm and the sink pipe diameter is either 10 or 20Â mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO 4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
Resumo:
Small quantity of energetic material coated on the inner wall of a polymer tube is proposed as a new method to generate micro-shock waves in the laboratory. These micro-shock waves have been harnessed to develop a novel method of delivering dry particle and liquid jet into the target. We have generated micro-shock waves with the help of reactive explosive compound high melting explosive (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) and traces of aluminium] coated polymer tube, utilising 9 J of energy. The detonation process is initiated electrically from one end of the tube, while the micro-shock wave followed by the products of detonation escape from the open end of the polymer tube. The energy available at the open end of the polymer tube is used to accelerate tungsten micro-particles coated on the other side of the diaphragm or force a liquid jet out of a small cavity filled with the liquid. The micro-particles deposited on a thin metal diaphragm (typically 100-mu m thick) were accelerated to high velocity using micro-shock waves to penetrate the target. Tungsten particles of 0.7 mu m diameter have been successfully delivered into agarose gel targets of various strengths (0.6-1.0 %). The device has been tested by delivering micro-particles into potato tuber and Arachis hypogaea Linnaeus (ground nut) stem tissue. Along similar lines, liquid jets of diameter 200-250 mu m (methylene blue, water and oils) have been successfully delivered into agarose gel targets of various strengths. Successful vaccination against murine salmonellosis was demonstrated as a biological application of this device. The penetration depths achieved in the experimental targets are very encouraging to develop a future device for biological and biomedical applications.
Resumo:
Analytical expressions are found for the coupled wavenumbers in flexible, fluid-filled, circular cylindrical orthotropic shells using the asymptotic methods. These expressions are valid for arbitrary circumferential orders. The Donnell-Mushtari shell theory is used to model the shell and the effect of the fluid is introduced through the fluid-loading parameter mu. The orthotropic problem is posed as a perturbation on the corresponding isotropic problem by defining a suitable orthotropy parameter epsilon, which is a measure of the degree of orthotropy. For the first study, an isotropic shell is considered (by setting epsilon = 0) and expansions are found for the coupled wavenumbers using a regular perturbation approach. In the second study, asymptotic expansions are found for the coupled wavenumbers in the limit of small orthotropy (epsilon << 1). For each study, isotropy and orthotropy, expansions are found for small and large values of the fluid-loading parameter mu. All the asymptotic solutions are compared with numerical solutions to the coupled dispersion relation and the match is seen to be good. The differences between the isotropic and orthotropic solutions are discussed. The main contribution of this work lies in extending the existing literature beyond in vacuo studies to the case of fluid-filled shells (isotropic and orthotropic).
Resumo:
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.