197 resultados para BINARY-MIXTURES
Resumo:
A microscopic theory of the statics and the dynamics of solvation of an ion in a binary dipolar liquid is presented. The theory properly includes the different intermolecular correlations that are present in a binary mixture. As a result, the theory can explain several important aspects of both the statics and the dynamics of solvation that are observed in experiments. It provides a microscopic explanation of the preferential solvation of the more polar species by the solute ion. The dynamics of solvation is predicted to be highly non-exponential, in general. The average relaxation time is found to change nonlinearly with the composition of the mixture. These predictions are in qualitative agreement with the experimental results.
Resumo:
Adsorption of n-alkane mixtures in the zeolite LTA-5A under liquid-phase conditions has been studied using grand canonical Monte Carlo (GCMC) simulations combined with parallel tempering. Normal GCMC techniques fail for some of these systems due to the preference of linear molecules to coil within a single cage in the zeolite. The narrow zeolite windows severerly restrict interactions of the molecules, making it difficult to simulate cooperative rearrangements necessary to explore configuration space. Because of these reasons, normal GCMC simulations results show poor reproducibility in some cases. These problems were overcome with parallel tempering techniques. Even with parallel tempering, these are very challenging systems for molecular simulation. Similar problems may arise for other zeolites such as CHA, AFX, ERI, KFI, and RHO having cages connected by narrow windows. The simulations capture the complex selectivity behavior observed in experiments such as selectivity inversion and azeotrope formation.
Resumo:
The constructional details of an 18-bit binary inductive voltage divider (IVD) for a.c. bridge applications is described. Simplified construction with less number of windings, interconnection of winding through SPDT solid state relays instead of DPDT relays, improves reliability of IVD. High accuracy for most precision measurement achieved without D/A converters. The checks for self consistency in voltage division shows that the error is less than 2 counts in 2(18).
Resumo:
Likely spatial distributions of network-modifying (and mobile) cations in (oxide) glasses are discussed here. At very low modifier concentrations, the ions form dipoles with non-bridging oxygen centres while, at higher levels of modification, the cations tend to order as a result of Coulombic interactions. Activation energies for cation migration are calculated, assuming that the ions occupy (face-sharing) octahedral sites. It is found that conductivity activation energy decreases markedly with increasing modifier content, in agreement with experiment.
Resumo:
The gasification of charcoal spheres in an atmosphere of carbon-dioxide-nitrogen mixture involving diffusion and reactions in the pores is modelled and the results are compared with experiments of Standish and Tanjung and those performed in the laboratory on wood-char spheres to determine the effects of diameter, density, gas composition and flow. The results indicate that the conversion time, t(c) approximately d1.03 for large particles (> 5 mm), departing substantially from the t(c) approximately d2 law valid for diffusion limited conditions. The computational studies indicate that the kinetic limit for the particle is below 100 mum. The conversion time varies inversely as the initial char density as expected in the model. Predictions from the model show that there is no significant change in conversion time up to 60% N2 consistent with the CO2-N2 experiments. The variation of diameter and density with time are predicted. The peculiar dependence of conversion time on flow velocity in the experiments is sought to be explained by opposing free and forced convection heat transfer and the attempt is only partly successful. The studies also indicate that the dependence on the CO concentration with low CO2 is significant, indicating the need for multistep reaction mechanism against the generally accepted single-step reaction.
Resumo:
The carbon potentials corresponding to the two-phase mixtures Cr + Cr23C6, Cr23C6 + Cr7C3, and Cr7C3 + Cr3C2 in the binary system Cr-C were measured in the temperature range 973 to 1173 K by using the methane-hydrogen gas equilibration technique. Special precautions were taken to prevent oxidation of the samples and to minimize thermal segregation in the gas phase. The standard Gibbs energies of formation of Cr23C6, Cr7C3, and Cr3C2 were derived from the measured carbon potentials. These values are compared with those reported in the literature. The Gibbs energies obtained in this study agree well with those obtained from solid-state cells incorporating CaF2 and ThO2(Y2O3) as solid electrolytes and sealed capsule isopiestic measurements reported in the literature.
Resumo:
A binary aqueous suspension of large (L) and small (S) nearly-hard-sphere colloidal polystyrene spheres is shown to segregate spontaneously into L-rich and S-rich regions for suitable choices of volume fraction and size ratio. This is the first observation of such purely entropic phase separation of chemically identical species in which at least one component remains fluid. Simple theoretical arguments are presented to make this effect plausible.
Resumo:
Non-resonant microwave absorption is studied as a function of temperature and composition in superconducting YBa2Cu3O7/CuO ceramic composite samples. In pure YBa2Cu3O7 only normal field dependence of the absorption is observed, where as in composites an anomalous non-monotonic field dependence is seen. The results are explained using an extended resistively shunted junction model and invoking the occurrence of junctions with phase difference psi(0) such that pi/2 < psi(0) < 3 pi/2. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.
Resumo:
An amorphous phase has been synthesized by mechanical alloying in a planetary mill over a nickel content range of 10�70 at.% in the Ti---Ni system and a copper content range of 10�50 at.% in the Ti---Cu system. In the case of ternary Ti---Ni---Cu alloys the glass-forming composition range has been found to be given by x = 10�20 for Ti60Ni40 ? xCux, x = 10 � 30 for Ti50Ni50 ? xCux and x = 10 � 40 for Ti40Ni60 ? xCux alloys. The difficulty in the amorphization of copper-rich compositions is explained in the light of enthalpy composition diagrams calculated for the ternary solid solution and the amorphous phase.
Resumo:
Adsorption of dioxygen at clean Ni(110) and Ni(100) surfaces gives rise to two prominent features in the O(1s) spectra at 530 and 531 eV due to O2- and O- type species, respectively. Interaction of ammonia with a Ni(100)-O surface where theta(oxygen) < 0.1 ML favors the dissociation of NH3 giving NHn, (n = 1, 2) and N(a) species. This is accompanied by a decrease in the intensity of the 531 eV feature. On the other hand. a Ni(100)-O surface where the oxygen species are mainly of the O2- type is unreactive, Coadsorption studies of NH3-O-2 mixtures show that at Ni(110) surfaces the uptake of both oxygen and ammonia increase with the proportion of oxygen in the NH3-O-2 mixture. The surface concentrations of the O- species and the NHn species also increase with the increase in the O-2/NH3 ratio while the slope of the plot of sigma(N) versus sigma(O-) is around unity. The results demonstrate the high surface reactivity of the O- species and its role in the dissociation of ammonia. Based on these observations, the possibility of the formation of a surface complex between ammonia and oxygen (specifically O-) is suggested. Results from vibrational spectroscopic studies of the coadsorption of NH3-O-2 mixtures are consistent with those from core-level spectroscopic studies.
Resumo:
The standard Gibbs energies of formation of lanthanum orthoferrite (LaFeO3-delta) and hexaferrite (LaFe12O19)were determined using solid-state electrochemical cells incorporating yttria-stabilized zirconia as the electrolyte and pure oxygen gas at ambient pressure as the reference electrode. From emf of the solid-state cell, the Gibbs energy of formation of nonstoichiometric orthoferrite (LaFeO3-delta) is obtained. To derive values for the stoichiometric phase, variation of the oxygen nonstoichiometric parameter with oxygen partial pressure was measured using thermogravimetry under controlled gas mixtures. The results obtained for LaFeO3 and LaFe12O19 can be summarized by the following equations, which represent the formation of ternary oxides from their component binary oxides: 1/2 La2O3 + 1/2 Fe2O3 -> LaFeO3: Delta G degrees (LaFeO3) (+/- 450) (J mol(-1)) = -62920 - 2.12T (K), and 1/2 La2O3 + 9/2Fe(2)O(3) + Fe3O4 -> LaFe12O19; Delta G degrees (LaFe12O19) (+/- 200) (J mol(-1)) = -103900 + 21.25T (K). These data are discussed critically in comparison with thermodynamic values reported in the literature from a variety of measurements. The values obtained in this study are consistent with calorimetric entropy and enthalpy of formation of the perovskite phase and with some of the Gibbs energy measurements reported in the literature. For the lanthanum hexaferrite (LaFe12O19) there are no prior thermodynamic measurements for comparison. (c) 2011 Elsevier B.V. All rights reserved.