227 resultados para Averaging Theorem
Resumo:
Static disorder has recently been implicated in the non-exponential kinetics of the unfolding of single molecules of poly-ubiquitin under a constant force Kuo, Garcia-Manyes, Li, Barel, Lu, Berne, Urbakh, Klafter, and Fernandez, Proc. Natl. Acad. Sci. U. S. A. 107, 11336 (2010)]. In the present paper, it is suggested that dynamic disorder may provide a plausible, alternative description of the experimental observations. This suggestion is made on the basis of a model in which the barrier to chain unfolding is assumed to be modulated by a control parameter r that evolves in a parabolic potential under the action of fractional Gaussian noise according to a generalized Langevin equation. The treatment of dynamic disorder within this model is pursued using Zwanzig's indirect approach to noise averaging Acc. Chem. Res. 23, 148 (1990)]. In conjunction with a self-consistent closure scheme developed by Wilemski and Fixman J. Chem. Phys. 58, 4009 (1973); ibid. 60, 866 (1974)], this approach eventually leads to an expression for the chain unfolding probability that can be made to fit the corresponding experimental data very closely. (C) 2011 American Institute of Physics.
Resumo:
Discrete vortex simulations of the mixing layer carried out in the past have usually involved large induced velocity fluctuations, and thus demanded rather long time-averaging to obtain satisfactory values of Reynolds stresses and third-order moments. This difficulty has been traced here, in part, to the use of discrete vortices to model what in actuality are continuous vortex sheets. We propose here a novel two-dimensional vortex sheet technique for computing mixing layer flow in the limit of infinite Reynolds number. The method divides the vortex sheet into constant-strength linear elements, whose motions are computed using the Biot-Savart law. The downstream far-field is modelled by a steady vorticity distribution derived by application of conical similarity from the solution obtained in a finite computational domain. The boundary condition on the splitter plate is satisfied rigorously using a doublet sheet. The computed large-scale roll-up of the vortex sheet is qualitatively similar to experimentally obtained shadow-graphs of the plane turbulent mixing layer. The mean streamwise velocity profile and the growth rate agree well with experimental data. The presently computed Reynolds stresses and third-order moments are comparable with experimental and previous vortex-dynamical results, without using any external parameter (such as the vortex core-size) of the kind often used in the latter. The computed autocorrelations are qualitatively similar to experimental results along the top and bottom edges of the mixing layer, and show a well-defined periodicity along the centreline. The accuracy of the present computation is independently established by demonstrating negligibly small changes in the five invariants (including the Hamiltonian) in vortex dynamics.
Resumo:
The initial motivation for this paper is to discuss a more concrete approach to an approximation theorem of Axler and Shields, which says that the uniform algebra on the closed unit disc (D) over bar generated by z and h, where h is a nowhere-holomorphic harmonic function on D that is continuous up to partial derivative D, equals C((D) over bar). The abstract tools used by Axler and Shields make harmonicity of h an essential condition for their result. We use the concepts of plurisubharmonicity and polynomial convexity to show that, in fact, the same conclusion is reached if h is replaced by h + R, where R is a non-harmonic perturbation whose Laplacian is ``small'' in a certain sense.
Resumo:
For d >= 2, Walkup's class K (d) consists of the d-dimensional simplicial complexes all whose vertex-links are stacked (d - 1)-spheres. Kalai showed that for d >= 4, all connected members of K (d) are obtained from stacked d-spheres by finitely many elementary handle additions. According to a result of Walkup, the face vector of any triangulated 4-manifold X with Euler characteristic chi satisfies f(1) >= 5f(0) - 15/2 chi, with equality only for X is an element of K(4). Kuhnel observed that this implies f(0)(f(0) - 11) >= -15 chi, with equality only for 2-neighborly members of K(4). Kuhnel also asked if there is a triangulated 4-manifold with f(0) = 15, chi = -4 (attaining equality in his lower bound). In this paper, guided by Kalai's theorem, we show that indeed there is such a triangulation. It triangulates the connected sum of three copies of the twisted sphere product S-3 (sic) S-1. Because of Kuhnel's inequality, the given triangulation of this manifold is a vertex-minimal triangulation. By a recent result of Effenberger, the triangulation constructed here is tight. Apart from the neighborly 2-manifolds and the infinite family of (2d + 3)-vertex sphere products Sd-1 X S-1 (twisted for d odd), only fourteen tight triangulated manifolds were known so far. The present construction yields a new member of this sporadic family. We also present a self-contained proof of Kalai's result. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Multisensor recordings are becoming commonplace. When studying functional connectivity between different brain areas using such recordings, one defines regions of interest, and each region of interest is often characterized by a set (block) of time series. Presently, for two such regions, the interdependence is typically computed by estimating the ordinary coherence for each pair of individual time series and then summing or averaging the results over all such pairs of channels (one from block 1 and other from block 2). The aim of this paper is to generalize the concept of coherence so that it can be computed for two blocks of non-overlapping time series. This quantity, called block coherence, is first shown mathematically to have properties similar to that of ordinary coherence, and then applied to analyze local field potential recordings from a monkey performing a visuomotor task. It is found that an increase in block coherence between the channels from V4 region and the channels from prefrontal region in beta band leads to a decrease in response time.
Resumo:
We give a simple linear algebraic proof of the following conjecture of Frankl and Furedi [7, 9, 13]. (Frankl-Furedi Conjecture) if F is a hypergraph on X = {1, 2, 3,..., n} such that 1 less than or equal to /E boolean AND F/ less than or equal to k For All E, F is an element of F, E not equal F, then /F/ less than or equal to (i=0)Sigma(k) ((i) (n-1)). We generalise a method of Palisse and our proof-technique can be viewed as a variant of the technique used by Tverberg to prove a result of Graham and Pollak [10, 11, 14]. Our proof-technique is easily described. First, we derive an identity satisfied by a hypergraph F using its intersection properties. From this identity, we obtain a set of homogeneous linear equations. We then show that this defines the zero subspace of R-/F/. Finally, the desired bound on /F/ is obtained from the bound on the number of linearly independent equations. This proof-technique can also be used to prove a more general theorem (Theorem 2). We conclude by indicating how this technique can be generalised to uniform hypergraphs by proving the uniform Ray-Chaudhuri-Wilson theorem. (C) 1997 Academic Press.
Resumo:
There are p heterogeneous objects to be assigned to n competing agents (n > p) each with unit demand. It is required to design a Groves mechanism for this assignment problem satisfying weak budget balance, individual rationality, and minimizing the budget imbalance. This calls for designing an appropriate rebate function. When the objects are identical, this problem has been solved which we refer as WCO mechanism. We measure the performance of such mechanisms by the redistribution index. We first prove an impossibility theorem which rules out linear rebate functions with non-zero redistribution index in heterogeneous object assignment. Motivated by this theorem,we explore two approaches to get around this impossibility. In the first approach, we show that linear rebate functions with non-zero redistribution index are possible when the valuations for the objects have a certain type of relationship and we design a mechanism with linear rebate function that is worst case optimal. In the second approach, we show that rebate functions with non-zero efficiency are possible if linearity is relaxed. We extend the rebate functions of the WCO mechanism to heterogeneous objects assignment and conjecture them to be worst case optimal.
Resumo:
We study the transient response of a colloidal bead which is released from different heights and allowed to relax in the potential well of an optical trap. Depending on the initial potential energy, the system's time evolution shows dramatically different behaviors. Starting from the short-time reversible to long-time irreversible transition, a stationary reversible state with zero net dissipation can be achieved as the release point energy is decreased. If the system starts with even lower energy, it progressively extracts useful work from thermal noise and exhibits an anomalous irreversibility. In addition, we have verified the Transient Fluctuation Theorem and the Integrated Transient Fluctuation Theorem even for the non-ergodic descriptions of our system. Copyright (C) EPLA, 2011
Resumo:
We address the optimal control problem of a very general stochastic hybrid system with both autonomous and impulsive jumps. The planning horizon is infinite and we use the discounted-cost criterion for performance evaluation. Under certain assumptions, we show the existence of an optimal control. We then derive the quasivariational inequalities satisfied by the value function and establish well-posedness. Finally, we prove the usual verification theorem of dynamic programming.
Resumo:
This paper deals with the ergodic properties of hybrid systems modelled by diffusion processes with state-dependent switching. We investigate the sufficient conditions expressed in terms of the parameters of the underlying process which would ensure the existence of a unique invariant probability and stability in distribution of the flow. It turns out that the conditions would depend on certain averaging mechanisms over the states of the discrete component of the hybrid system. (C) 1999 Academic Press.
Resumo:
In this paper we propose that the compressive tidal held in the centers of flat-core early-type galaxies and ultraluminous galaxies compresses molecular clouds producing dense gas observed in the centers of these galaxies. The effect of galactic tidal fields is usually considered disruptive in the literature. However, for some galaxies, the mass profile flattens toward the center and the resulting galactic tidal field is not disruptive, but instead it is compressive within the flat-core region. We have used the virial theorem to determine the minimum density of a molecular cloud to be stable and gravitationally bound within the tidally compressive region of a galaxy. We have applied the mechanism to determine the mean molecular cloud densities in the centers of a sample of flat-core, early-type galaxies and ultraluminous galaxies. For early-type galaxies with a core-type luminosity profile, the tidal held of the galaxy is compressive within half the core radius. We have calculated the mean gas densities for molecular gas in a sample of early-type galaxies which have already been detected in CO emission, and we obtain mean densities of [n] similar to 10(3)-10(6) cm(-3) within the central 100 pc radius. We also use our model to calculate the molecular cloud densities in the inner few hundred parsecs of a sample of ultraluminous galaxies. From the observed rotation curves of these galaxies we show that they have a compressive core within their nuclear region. Our model predicts minimum molecular gas densities in the range 10(2)-10(4) cm(-3) in the nuclear gas disks; the smaller values are applicable typically for galaxies with larger core radii. The resulting density values agree well with the observed range. Also, for large core radii, even fairly low-density gas (similar to 10(2) cm(-3)) can remain bound and stable close to the galactic center.
Resumo:
The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.
Resumo:
Brownian dynamics (BD) simulations have been carried out to explore the effects of the orientational motion of the donor-acceptor (D-A) chromophore pair on the Forster energy transfer between the D-A pair embedded in a polymer chain in solution. It is found that the usually employed orientational averaging (that is, replacing the orientational factor, kappa, by kappa (2) = 2/3) may lead to an error in the estimation of the rate of the reaction by about 20%. In the limit of slow orientational relaxation, the preaveraging of the orientational factor leads to an overestimation of the rate, while in the opposite limit of very fast orientational relaxation, the usual scheme underestimates the rate. The latter results from an interesting interplay between reaction and diffusion. On the other hand, when one of the chromophores is fixed, the preaveraged rate is found to be fairly reliable if the rotational relaxation of the chromophore is sufficiently fast. The present study also reveals a power law dependence of the FRET rate on the chain length (rate proportional to N- alpha, with alpha approximate to 2.6).
Resumo:
Consider a sequence of closed, orientable surfaces of fixed genus g in a Riemannian manifold M with uniform upper bounds on the norm of mean curvature and area. We show that on passing to a subsequence, we can choose parametrisations of the surfaces by inclusion maps from a fixed surface of the same genus so that the distance functions corresponding to the pullback metrics converge to a pseudo-metric and the inclusion maps converge to a Lipschitz map. We show further that the limiting pseudo-metric has fractal dimension two. As a corollary, we obtain a purely geometric result. Namely, we show that bounds on the mean curvature, area and genus of a surface F subset of M, together with bounds on the geometry of M, give an upper bound on the diameter of F. Our proof is modelled on Gromov's compactness theorem for J-holomorphic curves.
Resumo:
Protein folding and unfolding are complex phenomena, and it is accepted that multidomain proteins generally follow multiple pathways. Maltose-binding protein (MBP) is a large (a two-domain, 370-amino acid residue) bacterial periplasmic protein involved in maltose uptake. Despite the large size, it has been shown to exhibit an apparent two-state equilibrium unfolding in bulk experiments. Single-molecule studies can uncover rare events that are masked by averaging in bulk studies. Here, we use single-molecule force spectroscopy to study the mechanical unfolding pathways of MBP and its precursor protein (preMBP) in the presence and absence of ligands. Our results show that MBP exhibits kinetic partitioning on mechanical stretching and unfolds via two parallel pathways: one of them involves a mechanically stable intermediate (path I) whereas the other is devoid of it (path II). The apoMBP unfolds via path I in 62% of the mechanical unfolding events, and the remaining 38% follow path II. In the case of maltose-bound MBP, the protein unfolds via the intermediate in 79% of the cases, the remaining 21% via path II. Similarly, on binding to maltotriose, a ligand whose binding strength with the polyprotein is similar to that of maltose, the occurrence of the intermediate is comparable (82% via path I) with that of maltose. The precursor protein preMBP also shows a similar behavior upon mechanical unfolding. The percentages of molecules unfolding via path I are 53% in the apo form and 68% and 72% upon binding to maltose and maltotriose, respectively, for preMBP. These observations demonstrate that ligand binding can modulate the mechanical unfolding pathways of proteins by a kinetic partitioning mechanism. This could be a general mechanism in the unfolding of other large two-domain ligand-binding proteins of the bacterial periplasmic space.