148 resultados para Auricular-orbital plane
Resumo:
In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.
Resumo:
By a theorem of Gromov, for an almost complex structure J on CP2 tamed by the standard symplectic structure, the J-holomorphic curves representing the positive generator of homology form a projective plane. We show that this satisfies the Theorem of Desargues if and only if J is isomorphic to the standard complex structure. This answers a question of Ghys. (C) 2013 Published by Elsevier Masson SAS on behalf of Academie des sciences.
Resumo:
Presented in this paper is an improvement over a spring-steel dual-axis accelerometer that we had reported earlier.The fabrication process (which entails wire-cut electro discharge machining of easily accessible and inexpensive spring-steelfoil) and the sensing of the displacement (which is done using off-the-shelf Hall-effect sensors) remain the same. Theimprovements reported here are twofold: (i) the footprint of the packaged accelerometer is reduced from 80 mm square to 40mm square, and (ii) almost perfect de-coupling and symmetry are achieved between the two in-plane axes of the packageddevice as opposed to the previous embodiment where this was not the case. Good linearity with about 40 mV/g was measuredalong both the in-plane axes over a range of 0.1 to 1 g. The first two natural frequencies of the devices are at 30 Hz and 100Hz, respectively, as per the experiment. The highlights of this work are cost-effective processing, easy integration of the Hall-effect sensing capability on a customised printed circuit board, and inexpensive packaging without overly compromising eitherthe overall size or the sensitivity of the accelerometer. Through this work, we have reaffirmed the practicability of spring-steelaccelerometers towards the eventual goal of making it compete with micro machined silicon accelerometers in terms of sizeand performance. The cost is likely to be much lower for the spring-steel accelerometers than that of silicon accelerometers, especially when the volume of production is low and the sensor is to be used as a single packaged unit.
Resumo:
The paper proposes a non-destructive method for simultaneous measurement of in-plane and out-of-plane displacements and strains undergone by a deformed specimen from a single moire fringe pattern obtained on the specimen in a dual beam digital holographic interferometry setup. The moire fringe pattern encodes multiple interference phases which carry the information on multidimensional deformation. The interference field is segmented in each column and is modeled as multicomponent quadratic/cubic frequency-modulated signal in each segment. Subsequently, the product form of modified cubic phase function is used for accurate estimation of phase parameters. The estimated phase parameters are further utilized for direct estimation of the unwrapped interference phases and phase derivatives. The simulation and experimental results are provided to validate the effectiveness of the proposed method.
Resumo:
With the premise that electronic noise dominates mechanical noise in micromachined accelerometers, we present here a method to enhance the sensitivity and resolution at kHz bandwidth using mechanical amplification. This is achieved by means of a Displacement-amplifying Compliant Mechanism (DaCM) that is appended to the usual sensing element comprising a proof-mass and a suspension. Differential comb-drive arrangement is used for capacitive-sensing. The DaCM is designed to match the stiffness of the suspension so that there is substantial net amplification without compromising the bandwidth. A spring-mass-lever model is used to estimate the lumped parameters of the system. A DaCM-aided accelerometer and another without a DaCM-both occupying the same footprint-are compared to show that the former gives enhanced sensitivity: 8.7 nm/g vs. 1.4 nm/g displacement at the sensing-combs under static conditions. A prototype of the DaCM-aided micromachined acclerometer was fabricated using bulk-micromachining. It was tested at the die-level and then packaged on a printed circuit board with an off-the-shelf integrated chip for measuring change in capacitance. Under dynamic conditions, the measured amplification factor at the output of the DaCM was observed to be about 11 times larger than the displacement of the proof-mass and thus validating the concept of enhancing the sensitivity of accelerometers using mechanical amplifiers. The measured first in-plane natural frequency of the fabricated accelerometer was 6.25 kHz. The packaged accelerometer with the DaCM was measured to have 26.7 mV/g sensitivity at 40 Hz.
Resumo:
GX 301-2, a bright high-mass X-ray binary with an orbital period of 41.5 d, exhibits stable periodic orbital intensity modulations with a strong pre-periastron X-ray flare. Several models have been proposed to explain the accretion at different orbital phases, invoking accretion via stellar wind, equatorial disc, and accretion stream from the companion star. We present results from exhaustive orbital phase resolved spectroscopic measurements of GX 301-2 using data from the Gas Slit Camera onboard MAXI. Using spectroscopic analysis of the MAXI data with unprecedented orbital coverage for many orbits continuously, we have found a strong orbital dependence of the absorption column density and equivalent width of the iron emission line. A very large equivalent width of the iron line along with a small value of the column density in the orbital phase range 0.10-0.30 after the periastron passage indicates the presence of high density absorbing matter behind the neutron star in this orbital phase range. A low energy excess is also found in the spectrum at orbital phases around the pre-periastron X-ray flare. The orbital dependence of these parameters are then used to examine the various models about mode of accretion on to the neutron star in GX 301-2.
Resumo:
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
Resumo:
This paper presents a method to enhance both the sensitivity and bandwidth of in-plane capacitive micromachined accelerometers by using compliant mechanical amplifiers, and thus obviating the compromise between the sensitivity and bandwidth. Here, we compare one of the most sensitive single-axis capacitive accelerometers and another with large resonant frequency reported in the literature with the modified designs that include displacement-amplifying compliant mechanisms (DaCMs) occupying the same footprint and under identical conditions. We show that 62% improvement in sensitivity and 34% improvement in bandwidth in the former, and 27% and 25% in the latter can be achieved. Also presented here is a dual-axis accelerometer that uses a suspension that decouples and amplifies the displacements along the two in-plane orthogonal axes. The new design was microfabricated, packaged, and tested. The device is 25-mu m thick with the interfinger gap as large as 4 m. Despite the simplicity of the microfabrication process, the measured axial sensitivity (static) of about 0.58 V/g for both the axes was achieved with a cross-axis sensitivity of less than +/- 2%. The measured natural frequency along the two in-plane axes was 920 Hz. Displacement amplification of 6.2 was obtained using the DaCMs in the dual-axis accelerometer. 2013-0083]
Resumo:
The effect of insoluble surfactants on the instability of a two-layer film flow down an inclined plane is investigated based on the Orr-Sommerfeld boundary value problem. The study, focusing on Stokes flow P. Gao and X.-Y. Lu, ``Effect of surfactants on the inertialess instability of a two-layer film flow,'' J. Fluid Mech. 591, 495-507 (2007)], is further extended by including the inertial effect. The surface mode is recognized along with the interface mode. The initial growth rate corresponding to the interface mode accelerates at sufficiently long-wave regime in the presence of surface surfactant. However, the maximum growth rate corresponding to both interface and surface modes decelerates in the presence of surface surfactant when the upper layer is more viscous than the lower layer. On the other hand, when the upper layer is less viscous than the lower layer, a new interfacial instability develops due to the inertial effect and becomes weaker in the presence of interfacial surfactant. In the limit of negligible surface and interfacial tensions, respectively, two successive peaks of temporal growth rate appear in the long-wave and short-wave regimes when the interface mode is analyzed. However, in the case of the surface mode, only the long-wave peak appears. (C) 2014 AIP Publishing LLC.
Resumo:
One hundred complexes have been investigated exhibiting D-X center dot center dot center dot A interactions, where X = H, Cl or Li and DX is the `X bond' donor and A is the acceptor. The optimized structures of all these complexes have been used to propose a generalized `Legon-Millen rule' for the angular geometry in all these interactions. A detailed Atoms in Molecules (AIM) theoretical analysis confirms an important conclusion, known in the literature: there is a strong correlation between the electron density at the X center dot center dot center dot A bond critical point (BCP) and the interaction energy for all these interactions. In addition, we show that extrapolation of the fitted line leads to the ionic bond for Li-bonding (electrostatic) while for hydrogen and chlorine bonding, it leads to the covalent bond. Further, we observe a strong correlation between the change in electron density at the D-X BCP and that at the X center dot center dot center dot A BCP, suggesting conservation of the bond order. The correlation found between penetration and electron density at BCP can be very useful for crystal structure analysis, which relies on arbitrary van der Waals radii for estimating penetration. Various criteria proposed for shared-and closed-shell interactions based on electron density topology have been tested for H/Cl/Li bonded complexes. Finally, using the natural bond orbital (NBO) analysis it is shown that the D-X bond weakens upon X bond formation, whether it is ionic (DLi) or covalent (DH/DCl) and the respective indices such as ionicity or covalent bond order decrease. Clearly, one can think of conservation of bond order that includes ionic and covalent contributions to both D-X and X center dot center dot center dot A bonds, for not only X = H/Cl/Li investigated here but also any atom involved in intermolecular bonding.
Resumo:
In this paper, we present a novel algorithm for piecewise linear regression which can learn continuous as well as discontinuous piecewise linear functions. The main idea is to repeatedly partition the data and learn a linear model in each partition. The proposed algorithm is similar in spirit to k-means clustering algorithm. We show that our algorithm can also be viewed as a special case of an EM algorithm for maximum likelihood estimation under a reasonable probability model. We empirically demonstrate the effectiveness of our approach by comparing its performance with that of the state of art algorithms on various datasets. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In the titled tricyclic orthocarbonate derivative, the three endocyclic C-O bonds are longer than the exo-cyclic C-O bond (similar to 4.40 angstrom vs. similar to 1.37 angstrom). This indicates an anomeric-type interaction between the two electron lone pairs on the exocyclic oxygen atom and the antibonding orbitals of the two antiperiplanar endocyclic C-O bonds. The remaining endocyclic C-O bond - marginally shorter than the other two apparently adds to this effect. Intriguingly, the antibonding orbital of the exocyclic C-O bond extends into the interior of the adamantyl cage, and is stereoelectronically prevented from overlapping with any of the six adjacent lone pairs. The results also seem to indicate a preference for interaction between a single donor oxygen atom and multiple acceptor antibonding orbitals rather than vice versa. The results add insightfully to the substantial body of evidence favouring the antiperiplanar lone pair hypothesis (ALPH). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.
Resumo:
Tufted and plain unidirectional carbon fabric-reinforced epoxy composite laminates were fabricated by vacuum-enhanced resin infusion technology and subjected to in-plane tensile tests with a view to study the changes in mechanical properties and failure responses. Owing to the presence of tufts in the laminates, both the tensile strength and modulus decrease by similar to 38 and similar to 20%, respectively, vis-A -vis the values recorded for plain composites. The fracture features point to the fact that though both the composites fail in brittle manner, they, however, exhibit differing fiber pull out lengths. Further, it was noticed that for the tufted ones, crack originates in the vicinity of tuft thread, spreads through the composite in a brittle manner, and results in a display of shorter fiber pull out lengths. These observations and other results are discussed in this paper.