121 resultados para ANPSP control model
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (21)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (14)
- Boston University Digital Common (3)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (20)
- Cambridge University Engineering Department Publications Database (162)
- CentAUR: Central Archive University of Reading - UK (21)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Coffee Science - Universidade Federal de Lavras (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (24)
- Helda - Digital Repository of University of Helsinki (12)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (121)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (6)
- Memorial University Research Repository (1)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (10)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (37)
- Queensland University of Technology - ePrints Archive (313)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (11)
- Repositorio Institucional Universidad de Medellín (1)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (15)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (16)
- University of Queensland eSpace - Australia (12)
- University of Washington (1)
Resumo:
In this paper the soft lunar landing with minimum fuel expenditure is formulated as a nonlinear optimal guidance problem. The realization of pinpoint soft landing with terminal velocity and position constraints is achieved using Model Predictive Static Programming (MPSP). The high accuracy of the terminal conditions is ensured as the formulation of the MPSP inherently poses final conditions as a set of hard constraints. The computational efficiency and fast convergence make the MPSP preferable for fixed final time onboard optimal guidance algorithm. It has also been observed that the minimum fuel requirement strongly depends on the choice of the final time (a critical point that is not given due importance in many literature). Hence, to optimally select the final time, a neural network is used to learn the mapping between various initial conditions in the domain of interest and the corresponding optimal flight time. To generate the training data set, the optimal final time is computed offline using a gradient based optimization technique. The effectiveness of the proposed method is demonstrated with rigorous simulation results.